Tumor Biology

, Volume 36, Issue 6, pp 4453–4459 | Cite as

MiR-511 inhibits growth and metastasis of human hepatocellular carcinoma cells by targeting PIK3R3

  • Gang Cao
  • Weihua Dong
  • Xiaoxi Meng
  • Hongchao Liu
  • Huaqiang Liao
  • Shiyuan Liu
Research Article


MicroRNAs (miRNAs) are critical for cancer development and progression. Elucidating the underlying mechanism of miRNAs in carcinogenesis may lead to novel diagnostic and therapeutic strategies for malignancy. In this study, we found that miR-511 expression was markedly downregulated in hepatocellular carcinoma (HCC) cell lines and tissues. Phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) was identified as a direct target of miR-511 and miR-511 expression inversely correlated with PIK3R3 mRNA expression in clinical HCC tissues. We further demonstrated that miR-511 suppressed HCC cell proliferation, migration, and invasion by repressing PIK3R3 expression. Investigations of possible mechanisms underlying these results revealed that miR-511 inhibited the phosphorylation of AKT and mTOR, which are key participants in the AKT/mTOR pathway. Taken together, our findings provide new insights into tumor suppression by miR-511 by negatively regulating the PIK3R3/AKT/mTOR signaling pathway.


miR-511 Hepatocellular carcinoma PIK3R3 Proliferation Invasion 


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Yang LY, Fang F, Ou DP, Wu W, Zeng ZJ, Wu F. Solitary large hepatocellular carcinoma: a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg. 2009;249:118–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10:126–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011;39:6845–53.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer. 2007;43:1529–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Shen G, Rong X, Zhao J, Yang X, Li H, Jiang H, Zhou Q, Ji T, Huang S, Zhang J, Jia H. MicroRNA-105 suppresses cell proliferation and inhibits PI3K/AKT signaling in human hepatocellular carcinoma. Carcinogenesis 2014.Google Scholar
  8. 8.
    Li L, Liu Y, Guo Y, Liu B, Zhao Y, Li P, Song F, Zheng H, Yu J, Song T, Niu R, Li Q, Wang XW, Zhang W, Chen K. Regulatory mir-148a-acvr1/bmp circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology 2014.Google Scholar
  9. 9.
    Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, Jiang JD, Sung JJ, Cheng CH, Chen Y. A small molecule modulator of the tumor suppressor miRNA-34a inhibits the growth of hepatocellular carcinoma. Cancer Res 2014.Google Scholar
  10. 10.
    Li CH, Xu F, Chow S, Feng L, Yin D, Ng TB, et al. Hepatitis b virus × protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression. Eur J Cancer. 2014;50:2560–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Ge YY, Shi Q, Zheng ZY, Gong J, Zeng C, Yang J, et al. MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mtor and igf-1r. Oncotarget. 2014;5:6218–28.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu Z, Tu K, Liu Q. Effects of microRNA-30a on migration, invasion and prognosis of hepatocellular carcinoma. FEBS Lett. 2014;588:3089–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang J, Li J, Shen J, Wang C, Yang L, Zhang X. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer. 2012;12:227.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology. 2013;57:299–310.CrossRefPubMedGoogle Scholar
  15. 15.
    Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–97.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang C, Chi YL, Wang PY, Wang YQ, Zhang YX, Deng J, et al. Mir-511 and mir-1297 inhibit human lung adenocarcinoma cell proliferation by targeting oncogene trib2. PLoS ONE. 2012;7:e46090.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G, et al. Deregulation of mir-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 2010;57:734–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Tombol Z, Szabo PM, Molnar V, Wiener Z, Tolgyesi G, Horanyi J, et al. Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocr Relat Cancer. 2009;16:895–906.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. Mir-138 induces cell cycle arrest by targeting cyclin d3 in hepatocellular carcinoma. Carcinogenesis. 2012;33:1113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang H, An H, Wang B, Liao Q, Li W, Jin X, et al. Mir-133a represses tumour growth and metastasis in colorectal cancer by targeting lim and sh3 protein 1 and inhibiting the mapk pathway. Eur J Cancer. 2013;49:3924–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang RM, Yang H, Fang F, Xu JF, Yang LY. Microrna-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting ph domain and leucine-rich repeat protein phosphatase. Hepatology. 2014;60:1251–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu L, Wen Z, Zhou Y, Liu Z, Li Q, Fei G, et al. Microrna-7-regulated tlr9 signaling-enhanced growth and metastatic potential of human lung cancer cells by altering the phosphoinositide-3-kinase, regulatory subunit 3/akt pathway. Mol Biol Cell. 2013;24:42–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Augello C, Gianelli U, Savi F, Moro A, Bonoldi E, Gambacorta M, et al. Microrna as potential biomarker in hcv-associated diffuse large B-cell lymphoma. J Clin Pathol. 2014;67:697–701.CrossRefPubMedGoogle Scholar
  24. 24.
    Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R, et al. MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal mir-511 as putative positive regulator of toll-like receptor 4. J Biol Chem. 2011;286:26487–95.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, et al. Integrative genomic analysis of phosphatidylinositol 3′-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res. 2007;13:5314–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Soroceanu L, Kharbanda S, Chen R, Soriano RH, Aldape K, Misra A, et al. Identification of igf2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proc Natl Acad Sci U S A. 2007;104:3466–71.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhou J, Chen GB, Tang YC, Sinha RA, Wu Y, Yap CS, et al. Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Med Genom. 2012;5:34.CrossRefGoogle Scholar
  28. 28.
    Wang G, Yang X, Li C, Cao X, Luo X, Hu J. PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. Mol Cancer Ther. 2014;13:1837–47.CrossRefPubMedGoogle Scholar
  29. 29.
    Klahan S, Wu MS, Hsi E, Huang CC, Hou MF, Chang WC. Computational analysis of mRNA expression profiles identifies the ITG family and PIK3R3 as crucial genes for regulating triple negative breast cancer cell migration. Biomed Res Int. 2014;2014:536591.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu DM, Zhang P, Liu RY, Sang YX, Zhou C, Xu GC, et al. Phosphorylation and changes in the distribution of nucleolin promote tumor metastasis via the PI3K/AKT pathway in colorectal carcinoma. FEBS Lett. 2014;588:1921–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, He X, Yao M. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 2014.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Gang Cao
    • 1
    • 2
  • Weihua Dong
    • 1
  • Xiaoxi Meng
    • 1
  • Hongchao Liu
    • 1
  • Huaqiang Liao
    • 1
  • Shiyuan Liu
    • 1
  1. 1.Department of Radiology and Nuclear Medicine, Shanghai Changzheng HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.Department of Interventional RadiologyFirst People’s Hospital of Lian YungangLian YungangChina

Personalised recommendations