Tumor Biology

, Volume 36, Issue 6, pp 4327–4338 | Cite as

Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways

  • Stine Ninel Hansen
  • David Westergaard
  • Mathilde Borg Houlberg Thomsen
  • Mette Vistesen
  • Khoa Nguyen Do
  • Louise Fogh
  • Kirstine C. Belling
  • Jun Wang
  • Huanming Yang
  • Ramneek Gupta
  • Henrik J. Ditzel
  • José Moreira
  • Nils Brünner
  • Jan Stenvang
  • Anne-Sofie Schrohl
Research Article

Abstract

The microtubule-targeting taxanes are important in breast cancer therapy, but no predictive biomarkers have yet been identified with sufficient scientific evidence to allow clinical routine use. The purposes of the present study were to develop a cell-culture-based discovery platform for docetaxel resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments over 15 months. The cell lines were characterized regarding sensitivity to docetaxel and other chemotherapeutics and subjected to transcriptome-wide mRNA microarray profiling. MCF7RES and MDARES exhibited a biphasic growth inhibition pattern at increasing docetaxel concentrations. Gene expression analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC transporters, ECM-associated proteins, and lysosomal proteins was identified in both resistant cell lines. Finally, MCF7RES and MDARES presented with cross-resistance to epirubicin, but only MDARES showed cross-resistance to oxaliplatin. In conclusion, Pgp was identified as a key mediator of resistance to low docetaxel concentrations with other resistance mechanisms prominent at higher docetaxel concentrations. Supporting Pgp upregulation as one major mechanism of taxane resistance and cell-line-specific alterations as another, both MCF7RES and MDARES were cross-resistant to epirubicin (Pgp substrate), but only MDARES was cross-resistant to oxaliplatin (non-Pgp substrate).

Keywords

Breast cancer Docetaxel Resistance Microarray analysis Gene set enrichment analysis Pgp 

Notes

Acknowledgments

We thank Vibeke Jensen and Signe Lykke Nielsen for excellent technical assistance.This work was supported by The Harboe Foundation, A Race Against Breast Cancer; Danish National Research Foundation: Sino-Danish Breast Cancer Research Centre; Danish Centre for Translational Breast Cancer Research; The Danish Cancer Society and The Danish Council for Independent Research: Medical Sciences.

Conflict of interest

None.

Supplementary material

13277_2015_3072_MOESM1_ESM.xlsx (8.2 mb)
ESM 1 (XLSX 8395 kb)
13277_2015_3072_MOESM2_ESM.xlsx (66 kb)
ESM 2 (XLSX 66 kb)
13277_2015_3072_MOESM3_ESM.eps (172 kb)
Online Resource 3 Identification of altered molecular networks in docetaxel-resistant cell lines. Significant functional annotation clusters and pathways were identified in MCF7RES and MDARES by gene set enrichment analysis, with a KEGG pathway false discovery rate (FDR) ≤0.4 considered significantly enriched. The normalized enrichment score (NES) describes the level of downregulation (yellow) and upregulation (red) (EPS 172 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Mouridsen HT, Bjerre KD, Christiansen P, Jensen MB, Moller S. Improvement of prognosis in breast cancer in Denmark 1977-2006, based on the nationwide reporting to the DBCG Registry. Acta Oncol. 2008;47:525–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Gennari A, Conte P, Rosso R, Orlandini C, Bruzzi P. Survival of metastatic breast carcinoma patients over a 20-year period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer. 2005;104:1742–50.CrossRefPubMedGoogle Scholar
  5. 5.
    El Saghir NS, Tfayli A, Hatoum HA, Nachef Z, Dinh P, Awada A. Treatment of metastatic breast cancer: state-of-the-art, subtypes and perspectives. Crit Rev Oncol Hematol. 2011;80:433–49.CrossRefPubMedGoogle Scholar
  6. 6.
    Diaz JF, Andreu JM. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry. 1993;32:2747–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Fabbri F, Carloni S, Brigliadori G, Zoli W, Lapalombella R, Marini M. Sequential events of apoptosis involving docetaxel, a microtubule-interfering agent: a cytometric study. BMC Cell Biol. 2006;7:6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010;30:640–56.CrossRefPubMedGoogle Scholar
  9. 9.
    Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997;89:917–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Noguchi S. Predictive factors for response to docetaxel in human breast cancers. Cancer Sci. 2006;97:813–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Linn SC, Pinedo HM, van Ark-Otte J, van der Valk P, Hoekman K, Honkoop AH, et al. Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer. 1997;71:787–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Carter A, Dann EJ, Katz T, Shechter Y, Oliven A, Regev R, et al. Cells from chronic myelogenous leukaemia patients at presentation exhibit multidrug resistance not mediated by either MDR1 or MRP1. Br J Haematol. 2001;114:581–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Chintamani, Singh JP, Mittal MK, Saxena S, Bansal A, Bhatia A, et al. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer—a prospective clinical study. World J Surg Oncol. 2005;3:61.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936–42.PubMedGoogle Scholar
  15. 15.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:Article3Google Scholar
  17. 17.
    Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 2003;31:265–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9:811–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu B, Sun D, Xia W, Hung MC, Yu D. Cross-reactivity of C219 anti-p170(mdr-1) antibody with p185(c-erbB2) in breast cancer cells: cautions on evaluating p170(mdr-1). J Natl Cancer Inst. 1997;89:1524–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Hernandez-Vargas H, Palacios J, Moreno-Bueno G. Molecular profiling of docetaxel cytotoxicity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis. Oncogene. 2007;26:2902–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Ajabnoor GM, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis. 2012;3:e260.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Iseri OD, Kars MD, Gunduz U. Two different docetaxel resistant MCF-7 sublines exhibited different gene expression pattern. Mol Biol Rep. 2012;39:3505–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Kars MD, Iseri OD, Gunduz U. A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells. Eur J Pharmacol. 2011;657:4–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Iseri OD, Kars MD, Arpaci F, Gunduz U. Gene expression analysis of drug-resistant MCF-7 cells: implications for relation to extracellular matrix proteins. Cancer Chemother Pharmacol. 2010;65:447–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Kars MD, Iseri OD, Gunduz U. Drug resistant breast cancer cells overexpress ETS1 gene. Biomed Pharmacother. 2010;64:458–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti AM. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat. 2006;96:17–39.CrossRefPubMedGoogle Scholar
  32. 32.
    Duan Z, Lamendola DE, Duan Y, Yusuf RZ, Seiden MV. Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. Cancer Chemother Pharmacol. 2005;55:277–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm. 2011;8:1996–2011.CrossRefPubMedGoogle Scholar
  34. 34.
    Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa M, Lorente JA. Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS ONE. 2013;8:e53983.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hembruff SL, Laberge ML, Villeneuve DJ, Guo B, Veitch Z, Cecchetto M, et al. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer. 2008;8:318.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Guarneri V, Dieci MV, Conte P. Relapsed triple-negative breast cancer: challenges and treatment strategies. Drugs. 2013;73:1257–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Duan Z, Duan Y, Lamendola DE, Yusuf RZ, Naeem R, Penson RT, et al. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res. 2003;9:2778–85.PubMedGoogle Scholar
  38. 38.
    Cappell KM, Sinnott R, Taus P, Maxfield K, Scarbrough M, Whitehurst AW. Multiple cancer testis antigens function to support tumor cell mitotic fidelity. Mol Cell Biol. 2012;32:4131–40.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Materna V, Surowiak P, Kaplenko I, Spaczynski M, Duan Z, Zabel M, et al. Taxol-resistance-associated gene-3 (TRAG-3/CSAG2) expression is predictive for clinical outcome in ovarian carcinoma patients. Virchows Arch. 2007;450:187–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Grigoriadis A, Caballero OL, Hoek KS, da Silva L, Chen YT, Shin SJ, et al. CT-X antigen expression in human breast cancer. Proc Natl Acad Sci U S A. 2009;106:13493–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen YT, Ross DS, Chiu R, Zhou XK, Chen YY, Lee P, et al. Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS ONE. 2011;6:e17876.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hellman M, Tossavainen H, Rappu P, Heino J, Permi P. Characterization of intrinsically disordered prostate associated gene (PAGE5) at single residue resolution by NMR spectroscopy. PLoS ONE. 2011;6:e26633.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract. 2012;2012:283181.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Groth-Pedersen L, Jaattela M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–74.CrossRefPubMedGoogle Scholar
  45. 45.
    Nomura T, Katunuma N. Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest. 2005;52:1–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang XJ, Chen S, Huang KX, Le WD. Why should autophagic flux be assessed? Acta Pharmacol Sin. 2013;34:595–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Stine Ninel Hansen
    • 1
    • 2
  • David Westergaard
    • 1
    • 3
  • Mathilde Borg Houlberg Thomsen
    • 1
    • 2
  • Mette Vistesen
    • 1
    • 2
  • Khoa Nguyen Do
    • 1
    • 3
  • Louise Fogh
    • 1
    • 2
  • Kirstine C. Belling
    • 1
    • 3
  • Jun Wang
    • 1
    • 4
  • Huanming Yang
    • 1
    • 4
  • Ramneek Gupta
    • 1
    • 3
  • Henrik J. Ditzel
    • 1
    • 5
  • José Moreira
    • 1
    • 2
  • Nils Brünner
    • 1
    • 2
  • Jan Stenvang
    • 1
    • 2
  • Anne-Sofie Schrohl
    • 1
    • 2
  1. 1.Sino-Danish Breast Cancer Research CenterUniversity of CopenhagenCopenhagenDenmark
  2. 2.Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Center for Biological Sequence Analysis, Department of Systems BiologyTechnical University of DenmarkLyngbyDenmark
  4. 4.Beijing Genomics InstituteShenzhenChina
  5. 5.Department of Cancer and Inflammation Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark

Personalised recommendations