Advertisement

Tumor Biology

, Volume 36, Issue 6, pp 4309–4317 | Cite as

Involvement of acid-sensing ion channel 1α in hepatic carcinoma cell migration and invasion

  • Cheng Jin
  • Qing-Hai Ye
  • Feng-Lai Yuan
  • Yuan-Long Gu
  • Jian-Ping Li
  • Ying-Hong Shi
  • Xiao-Min Shen
  • Bo-Liu
  • Zhen-Hai Lin
Research Article

Abstract

An acidic microenvironment promotes carcinoma cell proliferation and migration. Acid-sensing ion channels (ASICs) are H+, Ca2+, and Na+-gated cation channels that are activated by changes in the extracellular pH, and ASIC1α may be associated with tumor proliferation and migration. Here, we investigated the role of ASIC1α in hepatocellular carcinoma (HCC) migration and invasion. The expression of ASIC1α was examined in 15 paired HCC and adjacent non-tumor tissues by immunohistochemistry. Reverse transcription (RT)-PCR and Western blotting were used to assess ASIC1α messenger RNA (mRNA) and protein expression in the HCC cell line SMMC-7721 cultured in different pH media or transfected with short hairpin RNA (shRNA) against ASIC1α. Cell migration ability was detected by wound healing and Transwell assays. ASIC1α expression was significantly higher in tumor tissues than in non-tumor tissues, and it was higher in HCC with postoperative metastasis than in that without metastasis. ASIC1α mRNA and protein expression was significantly higher in SMMC-7721 cells cultured at pH 6.5 than in those cultured at pH 7.4 and 6.0. shRNA-mediated silencing of ASIC1α significantly downregulated ASIC1α mRNA and protein expression compared with negative control or untransfected cells and inhibited HCC cell migration and invasion. ASIC1α is overexpressed in HCC tissues and associated with advanced clinical stage. A moderately acidic extracellular environment promoted ASIC1α expression, and silencing of ASIC1α expression inhibited the migration and invasion of HCC cells. Suppression of ASIC1α expression by RNAi attenuated the malignant phenotype of HCC cells, suggesting a novel approach for anticancer gene therapy.

Keywords

Acid-sensing ion channel 1α Hepatic carcinoma Migration Invasion 

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81301805 and No. 81270011) and the joint research project of hospital management center in Wuxi (No. YGZX1305 and No. YGZX1107). In addition, we are grateful for the guidance of Professor QH Ye.

References

  1. 1.
    Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hrgovic I, Glavic Z, Kovacic Z, Mulic S, Zunic L, Hrgovic Z. Repeated administration of inhibitors for ion pumps reduce markedly tumor growth in vivo. Med Arch. 2014;68:76–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xiong ZG, Chu XP, Simon RP. Acid sensing ion channels—novel therapeutic targets for ischemic brain injury. Front Biosci. 2007;12:1376–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res. 2014;5:69–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82:735–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.CrossRefPubMedGoogle Scholar
  7. 7.
    Kweon HJ, Suh BC. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep. 2013;46:295–304.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, et al. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res. 2011;1396:77–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Weng XC, Zheng JQ, Li J, Xiao WB. Underlying mechanism of ASIC1a involved in acidosis-induced cytotoxicity in rat C6 glioma cells. Acta Pharmacol Sin. 2007;28:1731–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology. Oncogene. 2011;30:2697–706.CrossRefPubMedGoogle Scholar
  11. 11.
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiong ZG, Chu XP, Simon RP. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG. Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels. Stroke. 2007;38:670–3.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee S, Mele M, Vahl P, Christiansen PM, Jensen VE, Boedtkjer E: Na,HCO -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted ph gradient across the plasma membrane. Pflugers Arch. 2014Google Scholar
  16. 16.
    Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep. 2013;30:2852–8.PubMedGoogle Scholar
  17. 17.
    Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, et al. Acid-sensing ion channels in malignant gliomas. J Biol Chem. 2003;278:15023–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. Cox-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol. 2011;301:C541–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang Y, Wu X, Li Q, Zhang S, Li SJ. Human voltage-gated proton channel Hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer. PLoS One. 2013;8:e70550.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340:153–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Leanza L, Biasutto L, Manago A, Gulbins E, Zoratti M, Szabo I. Intracellular ion channels and cancer. Front Physiol. 2013;4:227.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, et al. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules. 2013;18:6584–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Le GJ, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C. Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov. 2007;2:189–202.CrossRefGoogle Scholar
  25. 25.
    Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin). 2012;6:352–61.CrossRefGoogle Scholar
  26. 26.
    Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ. 2007;14:1295–304.CrossRefPubMedGoogle Scholar
  27. 27.
    Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage-gated Na + channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 2008;14:571–83.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Andersen AP, Moreira JM, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130098.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M. H(+)-gated cation channels. Ann N Y Acad Sci. 1999;868:67–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Thongon N, Ketkeaw P, Nuekchob C. The roles of acid-sensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epithelium-like Caco-2 monolayers. J Physiol Sci. 2014;64:129–39.CrossRefPubMedGoogle Scholar
  31. 31.
    Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, et al. Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia. 2013;15:1125–37.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vukovic V, Tannock IF. Influence of low ph on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer. 1997;75:1167–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karuri AR, Dobrowsky E, Tannock IF. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer. 1993;68:1080–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, et al. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem. 2009;284:24526–41.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kapoor N, Lee W, Clark E, Bartoszewski R, McNicholas CM, Latham CB, et al. Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes. Am J Physiol Cell Physiol. 2011;300:C1246–59.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rooj AK, McNicholas CM, Bartoszewski R, Bebok Z, Benos DJ, Fuller CM. Glioma-specific cation conductance regulates migration and cell cycle progression. J Biol Chem. 2012;287:4053–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Grifoni SC, Jernigan NL, Hamilton G, Drummond HA. ASIC proteins regulate smooth muscle cell migration. Microvasc Res. 2008;75:202–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain. 2013;136:106–15.CrossRefPubMedGoogle Scholar
  39. 39.
    Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490:552–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Eisenhut M, Wallace H. Ion channels in inflammation. Pflugers Arch. 2011;461:401–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Yuan FL, Chen FH, Lu WG, Li X. Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep. 2010;37:3233–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Cheng Jin
    • 1
    • 2
  • Qing-Hai Ye
    • 1
  • Feng-Lai Yuan
    • 2
  • Yuan-Long Gu
    • 2
  • Jian-Ping Li
    • 2
  • Ying-Hong Shi
    • 1
  • Xiao-Min Shen
    • 2
  • Bo-Liu
    • 2
  • Zhen-Hai Lin
    • 1
  1. 1.Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
  2. 2.Department of Hepatobiliary Pancreatic CenterThe Third Hospital Affiliated to Nantong UniversityWuxiChina

Personalised recommendations