Advertisement

Tumor Biology

, Volume 36, Issue 6, pp 4287–4292 | Cite as

Adiponectin inhibits VEGF-A in prostate cancer cells

  • Qiruo Gao
  • Junhua Zheng
  • Xudong Yao
  • Bo Peng
Research Article

Abstract

A role of adiponectin in tumorigenesis has recently been appreciated. Although plasma adiponectin levels in subjects with prostate cancer have been found to be significantly lower than in subjects with benign prostatic hyperplasia or in normal healthy controls, the underlying molecular mechanisms remain unknown. Here, we not only detected significant decreases in plasma adiponectin levels in prostate cancer patients, but also showed significant decreases in adiponectin receptor I (AdipoR1) levels in the resected prostate cancer specimen. Prostate cancer cell lines examined in the current study had all lower levels of adiponectin and AdipoR1, compared to normal healthy prostate tissue. Moreover, overexpression of adiponectin in prostate cancer cells decreased production of vascular endothelial growth factor A (VEGF-A), while adiponectin depletion increased VEGF-A. Furthermore, adiponectin seemed to activate AMPK/TSC2 to inhibit mTor-mediated activation of VEGF-A. Taken together, our data suggest that adiponectin may play an essential role in suppressing growth of prostate cancer cells through inhibition of VEGF-A-mediated cancer neovascularization.

Keywords

Prostate cancer Adiponectin Vascular endothelial growth factor A (VEGF-A) AMPK TSC2 mTor 

Notes

Conflicts of interest

None.

References

  1. 1.
    Saylor PJ. Prostate cancer: the androgen receptor remains front and centre. Nat Rev Clin Oncol. 2013;10:126–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Alva A, Hussain M. The changing natural history of metastatic prostate cancer. Cancer J. 2013;19:19–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Beltran H, Rubin MA. New strategies in prostate cancer: translating genomics into the clinic. Clin Cancer Res. 2013;19:517–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Xin L. Cells of origin for cancer: an updated view from prostate cancer. Oncogene. 2013;32:3655–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Huang S, Liao Q, Li L, Xin D. PTTG1 inhibits SMAD3 in prostate cancer cells to promote their proliferation. Tumour Biol. 2014;35:6265–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Xia Q, Li C, Bian P, Wang J, Dong S. Targeting SMAD3 for inhibiting prostate cancer metastasis. Tumour Biol. 2014;35:8537–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Q, Hong B, Wu S, Niu T. Inhibition of prostatic cancer growth by ginsenoside Rh2. Tumour Biol. 2014.Google Scholar
  8. 8.
    Antonarakis ES, Carducci MA. Targeting angiogenesis for the treatment of prostate cancer. Expert Opin Ther Targets. 2012;16:365–76.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kluetz PG, Figg WD, Dahut WL. Angiogenesis inhibitors in the treatment of prostate cancer. Expert Opin Pharmacother. 2010;11:233–47.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aragon-Ching JB, Dahut WL. VEGF inhibitors and prostate cancer therapy. Curr Mol Pharmacol. 2009;2:161–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Delongchamps NB, Peyromaure M. The role of vascular endothelial growth factor in kidney and prostate cancer. Can J Urol. 2007;14:3669–77.PubMedGoogle Scholar
  12. 12.
    Delongchamps NB, Peyromaure M, Dinh-Xuan AT. Role of vascular endothelial growth factor in prostate cancer. Urology. 2006;68:244–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis. 2007;38:258–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Nieves BJ, D'Amore PA, Bryan BA. The function of vascular endothelial growth factor. Biofactors. 2009;35:332–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63:800–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Perrier S, Jarde T. Adiponectin, an anti-carcinogenic hormone? A systematic review on breast, colorectal, liver and prostate cancer. Curr Med Chem. 2012;19:5501–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Buschemeyer 3rd WC, Freedland SJ. Obesity and prostate cancer: epidemiology and clinical implications. Eur Urol. 2007;52:331–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Mistry T, Digby JE, Desai KM, Randeva HS. Obesity and prostate cancer: a role for adipokines. Eur Urol. 2007;52:46–53.CrossRefPubMedGoogle Scholar
  22. 22.
    O'Malley RL, Taneja SS. Obesity and prostate cancer. Can J Urol. 2006;13 Suppl 2:11–7.PubMedGoogle Scholar
  23. 23.
    Baillargeon J, Rose DP. Obesity, adipokines, and prostate cancer (review). Int J Oncol. 2006;28:737–45.PubMedGoogle Scholar
  24. 24.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004;89:2563–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Barb D, Neuwirth A, Mantzoros CS, Balk SP. Adiponectin signals in prostate cancer cells through Akt to activate the mammalian target of rapamycin pathway. Endocr Relat Cancer. 2007;14:995–1005.CrossRefPubMedGoogle Scholar
  27. 27.
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4:648–57.CrossRefPubMedGoogle Scholar
  29. 29.
    Geissler EK, Schlitt HJ, Thomas G. mTOR, cancer and transplantation. Am J Transplant. 2008;8:2212–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee DF, Hung MC. All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle. 2007;6:3011–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Vansaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013;19:1926–32.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Urology, Shanghai 10th People’s HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations