Tumor Biology

, Volume 36, Issue 6, pp 4261–4269 | Cite as

MDC1 promotes ovarian cancer metastasis by inducing epithelial-mesenchymal transition

  • Xiaolin Liu
  • Ruifen Dong
  • Zhijun Jiang
  • Yuyan Wei
  • Yingwei Li
  • Linxuan Wei
  • Hengzi Sun
  • Yinuo Li
  • Ning Yang
  • Qifeng Yang
  • Zhaojian Liu
  • Beihua Kong
Research Article


Ovarian cancer is a highly invasive cancer with poor prognosis. Previous studies have revealed lots of connections between the invasiveness and epithelial-mesenchymal transition (EMT), which is common during the progression of ovarian cancer. MDC1, a mediator of DNA damage checkpoint, has recently been implicated as a potential oncogene. Here, in this article, we studied the role of MDC1 in ovarian cancer metastasis. First, in tissue samples, we found that high expression level of MDC1 was correlated with poor prognosis. Furthermore, MDC1 overexpression in ovarian cancer cells significantly increased migration and invasion. In contrast, silencing MDC1 reversed these processes. Consistently, nude mice xenograft confirmed that silencing MDC1 suppressed tumor metastasis in vivo. We further demonstrated that MDC1 induced EMT through modulation EMT markers such as E-cadherin, N-cadherin, and vimentin. Taken together, our findings suggest that MDC1 promotes ovarian cancer metastasis through the induction of EMT.


MDC1 Metastasis EMT Ovarian cancer 



This study was supported by the National 863 Program (2014AA020605) and the National Natural Science Foundation of China (81272857, 81171897).

Conflicts of interest


Supplementary material

13277_2015_3063_MOESM1_ESM.docx (120 kb)
ESM 1 (DOCX 120 kb)
13277_2015_3063_MOESM2_ESM.docx (263 kb)
ESM 2 (DOCX 263 kb)


  1. 1.
    Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 2011;61:183–203.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRefGoogle Scholar
  3. 3.
    De Craene B, Berx G. Regulatory networks defining emt during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.CrossRefPubMedGoogle Scholar
  4. 4.
    Kim MK, Kim MA, Kim H, Kim YB, Song YS. Expression profiles of epithelial-mesenchymal transition-associated proteins in epithelial ovarian carcinoma. BioMed Res Int. 2014;2014:495754.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Huang RY, Chung VY, Thiery JP. Targeting pathways contributing to epithelial-mesenchymal transition (emt) in epithelial ovarian cancer. Curr Drug Targets. 2012;13:1649–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291:59–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Stucki M, Jackson SP. Mdc1/nfbd1: A key regulator of the DNA damage response in higher eukaryotes. DNA Repair. 2004;3:953–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Coster G, Goldberg M. The cellular response to DNA damage: A focus on mdc1 and its interacting proteins. Nucleus. 2010;1:166–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Jungmichel S, Stucki M. Mdc1: The art of keeping things in focus. Chromosoma. 2010;119:337–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, et al. Mdc1 maintains genomic stability by participating in the amplification of atm-dependent DNA damage signals. Mol Cell. 2006;21:187–200.CrossRefPubMedGoogle Scholar
  11. 11.
    Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. Mdc1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. Mdc1 directly binds phosphorylated histone h2ax to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123:1213–26.CrossRefPubMedGoogle Scholar
  13. 13.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, et al. Mdc1 is required for the intra-s-phase DNA damage checkpoint. Nature. 2003;421:952–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Lou Z, Minter-Dykhouse K, Wu X, Chen J. Mdc1 is coupled to activated chk2 in mammalian DNA damage response pathways. Nature. 2003;421:957–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Nakanishi M, Ozaki T, Yamamoto H, Hanamoto T, Kikuchi H, Furuya K, et al. Nfbd1/mdc1 associates with p53 and regulates its function at the crossroad between cell survival and death in response to DNA damage. J Biol Chem. 2007;282:22993–3004.CrossRefPubMedGoogle Scholar
  17. 17.
    Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.CrossRefPubMedGoogle Scholar
  18. 18.
    Watanabe S, Watanabe K, Akimov V, Bartkova J, Blagoev B, Lukas J, et al. Jmjd1c demethylates mdc1 to regulate the rnf8 and brca1-mediated chromatin response to DNA breaks. Nat Struct Mol Biol. 2013;20:1425–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Meng XW, Koh BD, Zhang JS, Flatten KS, Schneider PA, Billadeau DD, et al. Poly (adp-ribose) polymerase inhibitors sensitize cancer cells to death receptor-mediated apoptosis by enhancing death receptor expression. J Biol Chem. 2014;289:20543–58.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang Z, Bu Y, Wang C, Liu G, Song F. Growth inhibition, morphology change, and cell cycle alterations in nfbd1-depleted human esophageal cancer cells. Mol Cell Biochem. 2010;342:1–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Yuan C, Bu Y, Wang C, Yi F, Yang Z, Huang X, et al. Nfbd1/mdc1 is a protein of oncogenic potential in human cervical cancer. Mol Cell Biochem. 2012;359:333–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Ye Q, Chen L, Yin X, Liu YJ, Ji Q, Zhao E: Development of serous ovarian cancer is associated with the expression of homologous recombination pathway proteins. Pathology oncology research. POR. 2014.Google Scholar
  23. 23.
    Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One. 2009;4:e6529.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Welcsh PL, King MC. Brca1 and brca2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10:705–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Foulkes WD, Shuen AY. In brief: Brca1 and brca2. J Pathol. 2013;230:347–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.CrossRefPubMedGoogle Scholar
  27. 27.
    Goodwin JF, Knudsen KE: Beyond DNA repair: DNA-pk function in cancer. Cancer discovery. 2014.Google Scholar
  28. 28.
    Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer Discov. 2014;4:405–14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Masutani M, Fujimori H. Poly (adp-ribosyl) ation in carcinogenesis. Mol Aspects Med. 2013;34:1202–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res. 2014;181:111–30.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bartkova J, Horejsi Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebaek NE, et al. DNA damage response mediators mdc1 and 53 bp1: Constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene. 2007;26:7414–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang B, Zhang L, Qiu F, Fang W, Deng J, Zhou Y, et al. A newfound association between mdc1 functional polymorphism and lung cancer risk in chinese. PLoS One. 2014;9:e106794.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiaolin Liu
    • 1
  • Ruifen Dong
    • 1
  • Zhijun Jiang
    • 1
  • Yuyan Wei
    • 1
  • Yingwei Li
    • 1
  • Linxuan Wei
    • 1
  • Hengzi Sun
    • 1
  • Yinuo Li
    • 1
  • Ning Yang
    • 1
  • Qifeng Yang
    • 2
  • Zhaojian Liu
    • 3
  • Beihua Kong
    • 1
  1. 1.Department of Obstetrics and Gynecology, Qilu HospitalShandong UniversityJinanChina
  2. 2.Department of Breast Surgery, Qilu HospitalShandong UniversityJinanChina
  3. 3.Department of Cell BiologyShandong University School of MedicineJinanChina

Personalised recommendations