Skip to main content

Advertisement

Log in

XRCC1 R399Q polymorphism and colorectal cancer risk in the Chinese Han population: a meta-analysis

  • Review
  • Published:
Tumor Biology

Abstract

X-ray repair cross-complementing group 1 (XRCC1) plays a key role in DNA repair, genetic instability, and tumorigenesis. The XRCC1 R399Q polymorphism has been reported in some studies to influence the risk of colorectal cancer (CRC), though this remains controversial. We performed a meta-analysis to determine the association of XRCC1 R399Q polymorphisms with CRC risk in the Chinese Han population. A literature search was conducted using PubMed, EMBASE, and the China National Knowledge Infrastructure to identify eligible studies published before June 2014. The pooled odds ratio (OR) and corresponding 95 % confidence interval (CI) were used to estimate the effect of XRCC1 R399Q polymorphisms on CRC risk. Eleven case–control studies with a total of 3194 CRC cases and 4472 controls were identified. No significant association between the XRCC1 R399Q polymorphism and CRC risk was observed in the Chinese Han population (Gln/Gln vs. Arg/Arg, OR = 1.26, 95 % CI = 0.85–1.87, P OR = 0.242; Arg/Gln vs. Arg/Arg, OR = 0.95, 95 % CI = 0.70–1.18, P OR = 0.651; dominant model, OR = 1.09, 95 % CI = 0.86–1.38, P OR = 0.480; and recessive model, OR = 1.24, 95 % CI = 0.91–1.70, P OR = 0.177). After excluding two studies that deviated from the Hardy–Weinberg equilibrium, there remained no significant association between XRCC1 R399Q and CRC risk. No publication bias was found using the funnel plot and Egger’s test. Our meta-analysis results suggest that the XRCC1 R399Q polymorphism is not associated with increased risk of CRC in the Chinese Han population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Schee K, Flatmark K, Holm R, Boye K, Paus E. Investigation of nonspecific cross-reacting antigen 2 as a prognostic biomarker in bone marrow plasma from colorectal cancer patients. Tumour Biol. 2012;33:73–83.

    Article  CAS  PubMed  Google Scholar 

  3. Sameer AS. Colorectal cancer: molecular mutations and polymorphisms. Front Oncol. 2013;3:1–8.

    Article  Google Scholar 

  4. Matsuo K, Mizoue T, Tanaka K, Tsuji I, Sugawara Y, Sasazuki S, et al. Association between body mass index and the colorectal cancer risk in Japan: pooled analysis of population-based cohort studies in Japan. Ann Oncol. 2012;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  5. Rosato V, Bosetti C, Levi F, Polesel J, Zucchetto A, Negri E, et al. Risk factors for young-onset colorectal cancer. Cancer Causes Control. 2013;24:335–41.

    Article  PubMed  Google Scholar 

  6. Lund EK, Belshaw NJ, Elliott GO, Johnson IT. Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc. 2011;70:194–204.

    Article  CAS  PubMed  Google Scholar 

  7. Migliore L, Migheli F, Spisni R, Coppede F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011;2011:792362.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith TR, Miller MS, Lohman K, Lange EM, Case LD, Mohrenweiser HW, et al. Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett. 2003;190:183–90.

    Article  CAS  PubMed  Google Scholar 

  10. Vidal AE, Boiteux S, Hickson ID, Radicella JP. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J. 2001;20:6530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mutamba JT, Svilar D, Prasongtanakij S, et al. XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair (Amst). 2011;10:1282–93.

    Article  CAS  Google Scholar 

  13. Nissar S, Sameer AS, Rasool R, Rashid F. DNA repair gene—XRCC1 in relation to genome instability and role in colorectal carcinogenesis. Oncol Res Treat. 2014;37:418–22.

    Article  CAS  PubMed  Google Scholar 

  14. Shen MR, Jones LM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res. 1998;58:604–8.

    CAS  PubMed  Google Scholar 

  15. de Boer JG. Polymorphisms in DNA repair and environmental interactions. Mutat Res. 2002;509:201–10.

    Article  PubMed  Google Scholar 

  16. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:1513–30.

    CAS  PubMed  Google Scholar 

  17. Muniz-Mendoza R, Ayala-Madrigal ML, Partida-Perez M, Peregrina-Sandoval J, Leal-Ugarte E, Macias-Gomez N, et al. MLH1 and XRCC1 polymorphisms in Mexican patients with colorectal cancer. Genet Mol Res. 2012;11:2315–20.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng FR, Ling Y, Yang J, Tian XC, Yang X, Luo RC. X-ray repair cross-complementing group 1 Arg399Gln gene polymorphism and susceptibility to colorectal cancer: a meta-analysis. Tumour Biol. 2013;34:555–63.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh LL. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci. 2007;14:183–93.

    Article  CAS  PubMed  Google Scholar 

  20. Jin MJ, Chen K, Zhang Y, Zhang W, Liu B, Zhang YJ. Correlations of single nucleotide polymorphisms of DNA repair gene XRCC1 to risk of colorectal cancer. Ai Zheng. 2007;26:274–9 [Article in Chinese].

    CAS  PubMed  Google Scholar 

  21. Ren Z, Fan JW, Zhou CZ, Qiu GQ, He L, Peng ZH. Association between XRCC1 SNP and susceptibility to sporadic colorectal carcinoma. Chin J Exp Surg. 2007;24:1087–9 [Article in Chinese].

    CAS  Google Scholar 

  22. Song HN, Liu XL, Er YX, Li CH, Hou RP, Xu CQ, et al. The correlative study of the XRCC1 gene haplotype and risk of colorectal cancer in China. J Qiqihar Medi Colle. 2008;29:2957–60 [Article in Chinese].

    Google Scholar 

  23. Huang S, Yi B, Yang XH, Rui R, Miao XP. Polymorphisms of DNA repair gene XRCC1 and genetic susceptibility to colorectal cancer. Chin J Exp Surg. 2010;27:1057–9 [Article in Chinese].

    CAS  Google Scholar 

  24. Ye CC, Huang ZM, Zhou CY. APE1 D148E, PARP1 V762A and XRCC1 R399Q polymorphisms and genetic susceptibility to colorectal cancer. Shijie Huaren Xiao Hua Zazhi. 2010;18:1275–9 [Article in Chinese].

    CAS  Google Scholar 

  25. Zhu C, Zhang Y, Bao Q, Xu YF, Qu LL, Tang ZP, et al. The study on the relationship between XRCC1 gene polymorphisms and the susceptibility of colorectal cancer. Chin J Dig. 2011;31:450–4 [Article in Chinese].

    CAS  Google Scholar 

  26. Zhao Y, Deng X, Wang Z, Wang Q, Liu Y. Genetic polymorphisms of DNA repair genes XRCC1 and XRCC3 and risk of colorectal cancer in Chinese population. Asian Pac J Cancer Prev. 2012;13:665–9.

    Article  PubMed  Google Scholar 

  27. Gao CM, Ding JH, Li SP, Liu YT, Cao HX, Wu JZ, et al. Polymorphisms in XRCC1 gene, alcohol drinking, and risk of colorectal cancer: a case–control study in Jiangsu Province of China. Asian Pac J Cancer Prev. 2013;14:6613–8.

    Article  Google Scholar 

  28. Li Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, et al. Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast Chinese population. Med Oncol. 2013;30:505.

    Article  PubMed  Google Scholar 

  29. Chen XJ, Cai RW, He BY. Study on the relationship between genetic polymorphism of dna repair gene-XRCC1 and the susceptibility to colorectal cancer. Chin J Coal Ind Med. 2014;17:558–61 [Article in Chinese].

    Google Scholar 

  30. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.

    Article  CAS  PubMed  Google Scholar 

  31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  34. Olinski R, Gackowski D, Foksinski M, Rozalski R, Roszkowski K, Jaruga P. Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic Biol Med. 2002;33:192–200.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JM, Lee YC, Yang SY, Yang PW, Luh SP, Lee CJ, et al. Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. Int J Cancer. 2001;95:240–6.

    Article  CAS  PubMed  Google Scholar 

  36. Engin AB, Karahalil B, Karakaya AE, Engin A. Association between XRCC1 ARG399GLN and P53 ARG72PRO polymorphisms and the risk of gastric and colorectal cancer in Turkish population. Arh Hig Rada Toksikol. 2011;62:207–14.

    Article  CAS  PubMed  Google Scholar 

  37. Barbisan G, Perez LO, Difranza L, Fernandez CJ, Ciancio NE, Golijow CD. XRCC1 Arg399Gln polymorphism and risk for cervical cancer development in Argentine women. Eur J Gynaecol Oncol. 2011;32:274–9.

    CAS  PubMed  Google Scholar 

  38. Saadat M, Ansari-Lari M. Polymorphism of XRCC1 (at codon 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res Treat. 2009;115:137–44.

    Article  CAS  PubMed  Google Scholar 

  39. Geng J, Zhang Q, Zhu C, Wang J, Chen L. XRCC1 genetic polymorphism Arg399Gln and prostate cancer risk: a meta-analysis. Urology. 2009;74:648–53.

    Article  PubMed  Google Scholar 

  40. Li J, Li Z, Feng L, Guo W, Zhang S. Polymorphisms of DNA repair gene XRCC1 and hepatocellular carcinoma risk among East Asians: a meta-analysis. Tumour Biol. 2013;34:261–9.

    Article  PubMed  Google Scholar 

  41. Mathiaux J, Le Morvan V, Pulido M, Jougon J, Begueret H, Robert J. Role of DNA repair gene polymorphisms in the efficiency of platinum-based adjuvant chemotherapy for non-small cell lung cancer. Mol Diagn Ther. 2011;15:159–66.

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Wang D, Huang G, Zhang C, Xu DH, Zhou W. XRCC1 polymorphisms and risk of colorectal cancer: a meta-analysis. Int J Color Dis. 2010;25:313–21.

    Article  Google Scholar 

  43. Geng J, Zhang YW, Huang GC, Chen LB. XRCC1 genetic polymorphism Arg399Gln and gastric cancer risk: a meta-analysis. World J Gastroenterol. 2008;14:6733–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tian Z, Li YL, Liu JG. XRCC1 Arg399Gln polymorphism contributes to increased risk of colorectal cancer in Chinese population. Mol Biol Rep. 2013;40:4147–51.

    Article  CAS  PubMed  Google Scholar 

  45. Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163:300–9.

    Article  PubMed  Google Scholar 

  46. Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD, et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000;21:965–71.

    Article  CAS  PubMed  Google Scholar 

  47. Matullo G, Palli D, Peluso M, Guarrera S, Carturan S, Celentano E, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis. 2001;22:1437–45.

    Article  CAS  PubMed  Google Scholar 

  48. Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Hirata I, et al. Effect of polymorphisms in the 3' untranslated region (3'-UTR) of vascular endothelial growth factor gene on gastric cancer and peptic ulcer diseases in Japan. Mol Carcinog. 2009;48:1030–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8:180–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of the People’s Republic of China (Nos. NSFC-2011-81172339).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Ming Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, CJ., Xu, KW., Chen, ZH. et al. XRCC1 R399Q polymorphism and colorectal cancer risk in the Chinese Han population: a meta-analysis. Tumor Biol. 36, 461–466 (2015). https://doi.org/10.1007/s13277-015-3054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3054-6

Keywords

Navigation