Abstract
MicroRNA-145 (miR-145) has been implicated in several cancers. However, its role in nasopharyngeal carcinoma (NPC) remains unclear. In this study, we proved that miR-145 was significantly downregulated in NPC and associated with NPC cell metastasis. Moreover, miR-145 suppressed Smad3 by directly binding to the 3′-untranslated region (UTR) of Smad3. Knockdown of Smad3 in NPC cells inhibited cell migration and invasion, which was consistent with the effect of miR-145 in NPC cells. In addition, Smad3 expression was inversely correlated with miR-145 level in clinical NPC samples. Taken together, our findings indicate that miR-145 is a tumour suppressor that affects invasive and metastatic properties of NPC via the miR-145/Smad3 axis, leading us to propose that miR-145 overexpression might be a potential therapeutic strategy of NPC intervention.
Similar content being viewed by others
References
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.
McDermott AL, Dutt SN, Watkinson JC. The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci. 2001;26(2):82–92.
Lai SZ, Li WF, Chen L, Luo W, Chen YY, Liu LZ, et al. How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys. 2011;80(3):661–8. doi:10.1016/j.ijrobp.2010.03.024.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi:10.1038/nrg1379.
Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science (New York, NY). 2005;309(5740):1519–24. doi:10.1126/science.1111444.
Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13(6):633–41. doi:10.1016/s1470-2045(12)70102-x.
Liu N, Tang LL, Sun Y, Cui RX, Wang HY, Huang BJ, et al. MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Lett. 2013;329(2):181–8. doi:10.1016/j.canlet.2012.10.032.
Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer. 2014;110(9):2300–9. doi:10.1038/bjc.2014.122.
Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res CR. 2010;29:151. doi:10.1186/1756-9966-29-151.
Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H, et al. The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer. FEBS J. 2013;280(9):2105–16. doi:10.1111/febs.12236.
Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. J Int Cancer. 2014;135(6):1286–96. doi:10.1002/ijc.28774.
Peng W, Hu J, Zhu XD, Liu X, Wang CC, Li WH, et al. Overexpression of miR-145 increases the sensitivity of vemurafenib in drug-resistant colo205 cell line. Tumour Biol Int Soc Oncodevelopmental Biol Med. 2014;35(4):2983–8. doi:10.1007/s13277-013-1383-x.
Chen H, Chen G, Chen Y, Liao W, Liu C, Chang K, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11.
Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11(8):943–50. doi:10.1038/ncb1905.
Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest. 2014;124(2):564–79. doi:10.1172/jci71104.
Xiao J, Xiang Q, Xiao YC, Su ZJ, Huang ZF, Zhang QH, et al. The effect of transforming growth factor-beta1 on nasopharyngeal carcinoma cells: insensitive to cell growth but functional to TGF-beta/Smad pathway. J Exp Clin Cancer Res CR. 2010;29:35. doi:10.1186/1756-9966-29-35.
Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, Zhou LF. The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res. 2013;1529:16–25. doi:10.1016/j.brainres.2013.07.031.
Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, et al. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene. 2004;23(7):1333–41. doi:10.1038/sj.onc.1207259.
Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.
Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, et al. Targeting Smad2 and Smad3 by miR-136 suppresses metastasis-associated traits of lung adenocarcinoma cells. Oncol Res. 2013;21(6):345–52. doi:10.3727/096504014x14024160459285.
Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH et al. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell cycle (Georgetown, Tex). 2014;13(15)
Yamazaki K, Masugi Y, Effendi K, Tsujikawa H, Hiraoka N, Kitago M, et al. Upregulated SMAD3 promotes epithelial-mesenchymal transition and predicts poor prognosis in pancreatic ductal adenocarcinoma. Lab Investig J Tech Methods Pathol. 2014;94(6):683–91. doi:10.1038/labinvest.2014.53.
Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-Oncology. 2013;15(10):1302–16. doi:10.1093/neuonc/not090.
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33. doi:10.1038/nature08199.
Shen YA, Lin CH, Chi WH, Wang CY, Hsieh YT, Wei YH, et al. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid-Based Complement Alternat Med eCAM. 2013;2013:590393. doi:10.1155/2013/590393.
Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell. 2012;151(2):278–88. doi:10.1016/j.cell.2012.08.041.
Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61. doi:10.1038/nature07086.
Acknowledgments
We would like to thank the Suzhou Key Laboratory for Molecular Cancer Genetics for their technical assistance. This work was supported by the Innovation Project of Suzhou International Technology Transfer and Cooperation (SH 201209), Suzhou Key Laboratory for Molecular Cancer Genetics (SZS201209) and Suzhou City’s Municipal Youth Fund of Science and Education (KJXW2012003).
Conflicts of interest
None
Author information
Authors and Affiliations
Corresponding authors
Additional information
Haiping Huang, Peng Sun and Zhe Lei contributed equally.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary Fig. 1
(DOCX 93 kb)
Supplementary Fig. 1
(DOCX 113 kb)
Supplementary Table 1
(DOC 16 kb)
Rights and permissions
About this article
Cite this article
Huang, H., Sun, P., Lei, Z. et al. miR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer. Tumor Biol. 36, 4123–4131 (2015). https://doi.org/10.1007/s13277-015-3046-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13277-015-3046-6