Advertisement

Tumor Biology

, Volume 36, Issue 6, pp 4123–4131 | Cite as

miR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer

Research Article

Abstract

MicroRNA-145 (miR-145) has been implicated in several cancers. However, its role in nasopharyngeal carcinoma (NPC) remains unclear. In this study, we proved that miR-145 was significantly downregulated in NPC and associated with NPC cell metastasis. Moreover, miR-145 suppressed Smad3 by directly binding to the 3′-untranslated region (UTR) of Smad3. Knockdown of Smad3 in NPC cells inhibited cell migration and invasion, which was consistent with the effect of miR-145 in NPC cells. In addition, Smad3 expression was inversely correlated with miR-145 level in clinical NPC samples. Taken together, our findings indicate that miR-145 is a tumour suppressor that affects invasive and metastatic properties of NPC via the miR-145/Smad3 axis, leading us to propose that miR-145 overexpression might be a potential therapeutic strategy of NPC intervention.

Keywords

miR-145 Nasopharyngeal cancer Smad3 Invasion Metastasis 

Notes

Acknowledgments

We would like to thank the Suzhou Key Laboratory for Molecular Cancer Genetics for their technical assistance. This work was supported by the Innovation Project of Suzhou International Technology Transfer and Cooperation (SH 201209), Suzhou Key Laboratory for Molecular Cancer Genetics (SZS201209) and Suzhou City’s Municipal Youth Fund of Science and Education (KJXW2012003).

Conflicts of interest

None

Supplementary material

13277_2015_3046_MOESM1_ESM.docx (126 kb)
Supplementary Fig. 1 (DOCX 93 kb)
13277_2015_3046_MOESM2_ESM.docx (157 kb)
Supplementary Fig. 1 (DOCX 113 kb)
13277_2015_3046_MOESM3_ESM.doc (16 kb)
Supplementary Table 1 (DOC 16 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    McDermott AL, Dutt SN, Watkinson JC. The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci. 2001;26(2):82–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Lai SZ, Li WF, Chen L, Luo W, Chen YY, Liu LZ, et al. How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys. 2011;80(3):661–8. doi: 10.1016/j.ijrobp.2010.03.024.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  5. 5.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi: 10.1038/nrg1379.CrossRefPubMedGoogle Scholar
  6. 6.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science (New York, NY). 2005;309(5740):1519–24. doi: 10.1126/science.1111444.CrossRefGoogle Scholar
  7. 7.
    Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13(6):633–41. doi: 10.1016/s1470-2045(12)70102-x.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu N, Tang LL, Sun Y, Cui RX, Wang HY, Huang BJ, et al. MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Lett. 2013;329(2):181–8. doi: 10.1016/j.canlet.2012.10.032.CrossRefPubMedGoogle Scholar
  9. 9.
    Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer. 2014;110(9):2300–9. doi: 10.1038/bjc.2014.122.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res CR. 2010;29:151. doi: 10.1186/1756-9966-29-151.CrossRefPubMedGoogle Scholar
  11. 11.
    Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H, et al. The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer. FEBS J. 2013;280(9):2105–16. doi: 10.1111/febs.12236.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. J Int Cancer. 2014;135(6):1286–96. doi: 10.1002/ijc.28774.CrossRefGoogle Scholar
  13. 13.
    Peng W, Hu J, Zhu XD, Liu X, Wang CC, Li WH, et al. Overexpression of miR-145 increases the sensitivity of vemurafenib in drug-resistant colo205 cell line. Tumour Biol Int Soc Oncodevelopmental Biol Med. 2014;35(4):2983–8. doi: 10.1007/s13277-013-1383-x.CrossRefGoogle Scholar
  14. 14.
    Chen H, Chen G, Chen Y, Liao W, Liu C, Chang K, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11(8):943–50. doi: 10.1038/ncb1905.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest. 2014;124(2):564–79. doi: 10.1172/jci71104.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xiao J, Xiang Q, Xiao YC, Su ZJ, Huang ZF, Zhang QH, et al. The effect of transforming growth factor-beta1 on nasopharyngeal carcinoma cells: insensitive to cell growth but functional to TGF-beta/Smad pathway. J Exp Clin Cancer Res CR. 2010;29:35. doi: 10.1186/1756-9966-29-35.CrossRefPubMedGoogle Scholar
  18. 18.
    Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, Zhou LF. The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res. 2013;1529:16–25. doi: 10.1016/j.brainres.2013.07.031.CrossRefPubMedGoogle Scholar
  19. 19.
    Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, et al. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene. 2004;23(7):1333–41. doi: 10.1038/sj.onc.1207259.CrossRefPubMedGoogle Scholar
  20. 20.
    Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.PubMedGoogle Scholar
  21. 21.
    Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, et al. Targeting Smad2 and Smad3 by miR-136 suppresses metastasis-associated traits of lung adenocarcinoma cells. Oncol Res. 2013;21(6):345–52. doi: 10.3727/096504014x14024160459285.CrossRefPubMedGoogle Scholar
  22. 22.
    Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH et al. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell cycle (Georgetown, Tex). 2014;13(15)Google Scholar
  23. 23.
    Yamazaki K, Masugi Y, Effendi K, Tsujikawa H, Hiraoka N, Kitago M, et al. Upregulated SMAD3 promotes epithelial-mesenchymal transition and predicts poor prognosis in pancreatic ductal adenocarcinoma. Lab Investig J Tech Methods Pathol. 2014;94(6):683–91. doi: 10.1038/labinvest.2014.53.CrossRefGoogle Scholar
  24. 24.
    Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-Oncology. 2013;15(10):1302–16. doi: 10.1093/neuonc/not090.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33. doi: 10.1038/nature08199.CrossRefPubMedGoogle Scholar
  26. 26.
    Shen YA, Lin CH, Chi WH, Wang CY, Hsieh YT, Wei YH, et al. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid-Based Complement Alternat Med eCAM. 2013;2013:590393. doi: 10.1155/2013/590393.PubMedGoogle Scholar
  27. 27.
    Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell. 2012;151(2):278–88. doi: 10.1016/j.cell.2012.08.041.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61. doi: 10.1038/nature07086.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of ENTThe First Affiliated Hospital of Soochow University, Medical College of Soochow UniversitySuzhouChina
  2. 2.Soochow University Laboratory of Cancer Molecular GeneticsMedical College of Soochow UniversitySuzhouChina
  3. 3.Suzhou Key Laboratory for Molecular Cancer GeneticsSuzhouChina

Personalised recommendations