Tumor Biology

, Volume 36, Issue 5, pp 3931–3939 | Cite as

Genetic variations in monocarboxylate transporter genes as predictors of clinical outcomes in non-small cell lung cancer

  • Xu Guo
  • Cheng Chen
  • Boya Liu
  • Yousheng Wu
  • Yibing Chen
  • Xingchun Zhou
  • Xiaojun Huang
  • Xiaofei Li
  • Hushan Yang
  • Zhinan Chen
  • Jinliang Xing
Research Article


Non-small cell lung cancer (NSCLC) is characterized by poor prognosis and only a few molecular markers may be potentially used to predict clinical outcomes. Previous studies have demonstrated that monocarboxylate transporters (MCTs) play important roles in the development and progression of many cancers. The purpose of this study was to assess the effects of single nucleotide polymorphisms (SNPs) of MCT genes on prognosis of NSCLC patients in Chinese Han population. Nine functional SNPs in MCT1, MCT2, and MCT4 genes were selected and genotyped using Sequenom iPLEX genotyping system in 500 Chinese NSCLC patients receiving surgery. Multivariate Cox proportional hazards model and Kaplan–Meier curve were used for the prognostic analysis. TT genotype of SNP rs1049434 (MCT1) was significantly associated with better overall survival (OS) (HR = 0.56, P = 0.026) and recurrence-free survival (RFS) (HR = 0.57, P = 0.016) of NSCLC patients. TT genotype of another SNP rs995343 (MCT2) exhibited an association with worse RFS of NSCLC patients (HR = 1.46, P = 0.039). Unfavorable genotypes of SNP rs1049434 and rs995343 showed a significant cumulative effect on OS and RFS of NSCLC patients. Moreover, we found that patients carrying AA+AT genotypes of rs1049434 showed significant OS and RFS benefits from adjuvant chemotherapy, but those with TT genotype did not. Our findings suggest that SNPs in MCT1 and MCT2 genes may affect clinical outcomes and can be used to predict the response to adjuvant chemotherapy in NSCLC patients who received surgical treatment once validated in future study.


Non-small cell lung cancer Single nucleotide polymorphisms Monocarboxylate transporters Prognosis 


Conflicts of interest



This work was supported by the Program for New Century Excellent Talents in University, National Basic Research Program (2015CB553703).

Supplementary material

13277_2014_3036_MOESM1_ESM.tif (247 kb)
ESM 1 (TIFF 246 kb)
13277_2014_3036_Fig4_ESM.gif (21 kb)

High resolution image (GIF 20 kb)

13277_2014_3036_MOESM2_ESM.doc (106 kb)
ESM 2 (DOC 105 kb)


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166.Google Scholar
  2. 2.
    Yang L, Parkin DM, Li L, Chen Y. Time trends in cancer mortality in China: 1987–1999. Int J Cancer J Int Cancer. 2003;106(5):771–83. doi: 10.1002/ijc.11300.CrossRefGoogle Scholar
  3. 3.
    Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56. doi: 10.1038/nrc1739.CrossRefPubMedGoogle Scholar
  4. 4.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: Cancer J Clin. 2005;55(2):74–108.Google Scholar
  5. 5.
    Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014;120(6):774–80. doi: 10.1002/cncr.28501.CrossRefPubMedGoogle Scholar
  6. 6.
    Gullino PM, Clark SH, Grantham FH. The interstitial fluid of solid tumors. Cancer Res. 1964;24:780–94.PubMedGoogle Scholar
  7. 7.
    Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv: Eur J Physiol. 2004;447(5):619–28. doi: 10.1007/s00424-003-1067-2.CrossRefGoogle Scholar
  8. 8.
    Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, et al. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev. 2003;29(6):541–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, et al. Regulation of intracellular pH in human melanoma: potential therapeutic implications. Mol Cancer Ther. 2002;1(8):617–28.PubMedGoogle Scholar
  10. 10.
    Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H. Cancer-related issues of CD147. Cancer Genomics Proteomics. 2010;7(3):157–69.PubMedGoogle Scholar
  11. 11.
    Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E. Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther. 2007;6(9):1476–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010;2010:427694. doi: 10.1155/2010/427694.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, et al. Monocarboxylate transporter 1 is upregulated in basal-like breast carcinoma. Histopathology. 2010;56(7):860–7. doi: 10.1111/j.1365-2559.2010.03560.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, Pinheiro C, Silva J, Pereira H, et al. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011;11:312. doi: 10.1186/1471-2407-11-312.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery. 2004;55(6):1410–9. discussion 9.CrossRefPubMedGoogle Scholar
  16. 16.
    Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011;26(10):1279–86.PubMedGoogle Scholar
  17. 17.
    Nakayama Y, Torigoe T, Inoue Y, Minagawa N, Izumi H, Kohno K, et al. Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp Ther Med. 2012;3(1):25–30. doi: 10.3892/etm.2011.361.PubMedGoogle Scholar
  18. 18.
    Su J, Chen X, Kanekura T. A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by downregulating glycolysis. Cancer Lett. 2009;273(1):140–7. doi: 10.1016/j.canlet.2008.07.034.CrossRefPubMedGoogle Scholar
  19. 19.
    Diers AR, Broniowska KA, Chang CF, Hogg N. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J. 2012;444(3):561–71. doi: 10.1042/BJ20120294.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res. 2012;72(4):939–48. doi: 10.1158/0008-5472.CAN-11-2474.CrossRefPubMedGoogle Scholar
  21. 21.
    Ulrich CM, Robien K, McLeod HL. Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat Rev Cancer. 2003;3(12):912–20. doi: 10.1038/nrc1233.CrossRefPubMedGoogle Scholar
  22. 22.
    Guo X, Li H, Fei F, Liu B, Li X, Yang H, et al. Genetic variations in SLC3A2/CD98 gene as prognosis predictors in non-small cell lung cancer. Mol Carcinog. 2014. doi: 10.1002/mc.22167.PubMedCentralGoogle Scholar
  23. 23.
    Zhang M, Hu Z, Huang J, Shu Y, Dai J, Jin G, et al. A 3′-untranslated region polymorphism in IGF1 predicts survival of non-small cell lung cancer in a Chinese population. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(4):1236–44. doi: 10.1158/1078-0432.CCR-09-2719.CrossRefGoogle Scholar
  24. 24.
    Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37(Web Server issue):W600–5. doi: 10.1093/nar/gkp290.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011;102(5):1007–13. doi: 10.1111/j.1349-7006.2011.01908.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-oncology. 2013;15(2):172–88. doi: 10.1093/neuonc/nos298.CrossRefPubMedGoogle Scholar
  27. 27.
    Gerlinger M, Santos CR, Spencer-Dene B, Martinez P, Endesfelder D, Burrell RA, et al. Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target. J Pathol. 2012;227(2):146–56. doi: 10.1002/path.4006.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee I, Lee SJ, Kang WK, Park C. Inhibition of monocarboxylate transporter 2 induces senescence-associated mitochondrial dysfunction and suppresses progression of colorectal malignancies in vivo. Mol Cancer Ther. 2012;11(11):2342–51. doi: 10.1158/1535-7163.MCT-12-0488.CrossRefPubMedGoogle Scholar
  29. 29.
    Halestrap AP. The SLC16 gene family—structure, role and regulation in health and disease. Mol Aspects Med. 2013;34(2–3):337–49. doi: 10.1016/j.mam.2012.05.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Sanita P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P, et al. Tumor–stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer. 2014;14:154. doi: 10.1186/1471-2407-14-154.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71(7):2550–60. doi: 10.1158/0008-5472.CAN-10-2828.CrossRefPubMedGoogle Scholar
  32. 32.
    Cupeiro R, Gonzalez-Lamuno D, Amigo T, Peinado AB, Ruiz JR, Ortega FB, et al. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J Sci Med Sport / Sport Med Aust. 2012;15(6):541–7. doi: 10.1016/j.jsams.2012.03.009.CrossRefGoogle Scholar
  33. 33.
    Cupeiro R, Benito PJ, Maffulli N, Calderon FJ, Gonzalez-Lamuno D. MCT1 genetic polymorphism influence in high intensity circuit training: a pilot study. J Sci Med Sport / Sport Med Aust. 2010;13(5):526–30. doi: 10.1016/j.jsams.2009.07.004.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xu Guo
    • 1
    • 2
  • Cheng Chen
    • 1
  • Boya Liu
    • 3
  • Yousheng Wu
    • 1
  • Yibing Chen
    • 1
  • Xingchun Zhou
    • 1
  • Xiaojun Huang
    • 1
  • Xiaofei Li
    • 3
  • Hushan Yang
    • 4
  • Zhinan Chen
    • 2
  • Jinliang Xing
    • 1
  1. 1.State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic MedicineFourth Military Medical UniversityXi’anChina
  2. 2.State Key Laboratory of Cancer Biology and Cell Engineering Research Center and Department of Cell BiologyFourth Military Medical UniversityXi’anChina
  3. 3.Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi’anChina
  4. 4.Division of Population Science, Department of Medical Oncology, Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations