Tumor Biology

, Volume 36, Issue 5, pp 3911–3917 | Cite as

microRNA-377 suppresses the proliferation of human osteosarcoma MG-63 cells by targeting CDK6

  • Liang Wang
  • Jianli Shao
  • Xia Zhang
  • Meng Xu
  • Jianfu Zhao
Research Article


MicroRNAs (miRNAs) are essential to the progression of osteosarcoma. Previous research using osteosarcoma samples confirmed that miR-377 expression is less than that observed in normal human osteoblast expression. These data suggest a role for miR-377 in osteosarcoma that warrants investigation. To address this concept, we measured miR-377 expression in two cell models, and we also observed that miR-377 was less expressed in osteosarcoma MG-63 cells compared to the hFOB1.19 human fetal osteoblastic cell line. Moreover, miR-377 overexpression reduced cell proliferation and suppressed invasion of MG-63 cells but had no effect on MG-63 cell apoptosis. Because cyclin-dependent kinase 6 (CDK6) may be a potential target of miR-377 in osteosarcoma cells, we overexpressed CDK6 and observed that overexpression attenuated tumor suppressive effects of miR-377 on cell proliferation. Our data suggest that miR-377 can suppress proliferation in MG-63 cells in part by targeting CDK6.


Under-expression hFOB1.19 Cellular apoptosis Cellular invasion Luciferase reporter assay 



This study was supported by grants from the Fundamental Research Funds for the Central Universities (No. 21614308) and the Medical Science Research Foundation of Guangdong Province (No. B2012195). We thank LetPub ( for its linguistic assistance during the preparation of this manuscript.

Conflicts of interest



  1. 1.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Winter J, Jung S, Keller S, et al. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001;2:110–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279:52361–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Meng F, Henson R, Wehbe-Janek H, et al. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human holangiocytes. J Biol Chem. 2007;282:8256–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell. 2006;126:767–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49:1571–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiong Y, Fang JH, Yun JP, Yang J, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–45.PubMedGoogle Scholar
  13. 13.
    Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell. 2013;5:2.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seok JK, Lee SH, Kim MJ. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42:8062–72.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maire G, Martin JW, Yoshimoto M, et al. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet. 2011;204:138–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Lulla RR, Costa FF, Bischof JM, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma. 2011;2011:732690.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Novello C, Pazzaglia L, Cingolani C, et al. miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol. 2013;42(2):667–75.PubMedGoogle Scholar
  19. 19.
    Xu JQ, Zhang WB, Wan R, et al. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9. Tumour Biol. 2014;35(10):9847–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang YQ, Qi J, Xu JQ, et al. MicroRNA-142-3p, a novel target of tumor suppressor menin, inhibits osteosarcoma cell proliferation by down-regulation of FASN. Tumour Biol. 2014;35(10):10287–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Han K, Zhao T, Chen X, et al. microRNA-194 suppresses osteosarcoma cell proliferation and metastasis in vitro and in vivo by targeting CDH2 and IGF1R. Int J Oncol. 2014;45(4):1437–49.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang R, Luo H, Wang S, et al. MicroRNA-377 inhibited proliferation and invasion of human glioblastoma cells by directly targeting specificity protein 1. Neuro-Oncology. 2014;16(11):1510–22.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Beckman JD, Chen C, Nguyen J, et al. Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. J Biol Chem. 2011;286:3194–202.CrossRefPubMedGoogle Scholar
  24. 24.
    John B, Enright AJ, Aravin A, et al. miRanda application: Human MicroRNA targets. PLoS Biol. 2005;3(7):e264.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2011;120:15–20.CrossRefGoogle Scholar
  26. 26.
    Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24:167–81.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shao Y, Qu Y, Dang S, et al. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 2013;13:51–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Oncology, First Affiliated HospitalJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Orthopedic and Traumatology, First Affiliated HospitalJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.Medical Imaging Center, First Affiliated HospitalJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations