Skip to main content
Log in

microRNA-377 suppresses the proliferation of human osteosarcoma MG-63 cells by targeting CDK6

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are essential to the progression of osteosarcoma. Previous research using osteosarcoma samples confirmed that miR-377 expression is less than that observed in normal human osteoblast expression. These data suggest a role for miR-377 in osteosarcoma that warrants investigation. To address this concept, we measured miR-377 expression in two cell models, and we also observed that miR-377 was less expressed in osteosarcoma MG-63 cells compared to the hFOB1.19 human fetal osteoblastic cell line. Moreover, miR-377 overexpression reduced cell proliferation and suppressed invasion of MG-63 cells but had no effect on MG-63 cell apoptosis. Because cyclin-dependent kinase 6 (CDK6) may be a potential target of miR-377 in osteosarcoma cells, we overexpressed CDK6 and observed that overexpression attenuated tumor suppressive effects of miR-377 on cell proliferation. Our data suggest that miR-377 can suppress proliferation in MG-63 cells in part by targeting CDK6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  2. Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  4. Winter J, Jung S, Keller S, et al. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  5. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001;2:110–9.

    Article  CAS  PubMed  Google Scholar 

  6. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.

    Article  CAS  PubMed  Google Scholar 

  7. Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279:52361–5.

    Article  CAS  PubMed  Google Scholar 

  8. Meng F, Henson R, Wehbe-Janek H, et al. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human holangiocytes. J Biol Chem. 2007;282:8256–64.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell. 2006;126:767–74.

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–62.

    Article  CAS  PubMed  Google Scholar 

  11. Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49:1571–82.

    Article  CAS  PubMed  Google Scholar 

  12. Xiong Y, Fang JH, Yun JP, Yang J, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–45.

    CAS  PubMed  Google Scholar 

  13. Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.

    Article  CAS  PubMed  Google Scholar 

  14. Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell. 2013;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seok JK, Lee SH, Kim MJ. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42:8062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maire G, Martin JW, Yoshimoto M, et al. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet. 2011;204:138–46.

    Article  CAS  PubMed  Google Scholar 

  17. Lulla RR, Costa FF, Bischof JM, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma. 2011;2011:732690.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Novello C, Pazzaglia L, Cingolani C, et al. miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol. 2013;42(2):667–75.

    CAS  PubMed  Google Scholar 

  19. Xu JQ, Zhang WB, Wan R, et al. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9. Tumour Biol. 2014;35(10):9847–53.

    Article  CAS  PubMed  Google Scholar 

  20. Yang YQ, Qi J, Xu JQ, et al. MicroRNA-142-3p, a novel target of tumor suppressor menin, inhibits osteosarcoma cell proliferation by down-regulation of FASN. Tumour Biol. 2014;35(10):10287–93.

    Article  CAS  PubMed  Google Scholar 

  21. Han K, Zhao T, Chen X, et al. microRNA-194 suppresses osteosarcoma cell proliferation and metastasis in vitro and in vivo by targeting CDH2 and IGF1R. Int J Oncol. 2014;45(4):1437–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang R, Luo H, Wang S, et al. MicroRNA-377 inhibited proliferation and invasion of human glioblastoma cells by directly targeting specificity protein 1. Neuro-Oncology. 2014;16(11):1510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beckman JD, Chen C, Nguyen J, et al. Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. J Biol Chem. 2011;286:3194–202.

    Article  CAS  PubMed  Google Scholar 

  24. John B, Enright AJ, Aravin A, et al. miRanda application: Human MicroRNA targets. PLoS Biol. 2005;3(7):e264.

    Article  PubMed Central  Google Scholar 

  25. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2011;120:15–20.

    Article  Google Scholar 

  26. Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24:167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao Y, Qu Y, Dang S, et al. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 2013;13:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Fundamental Research Funds for the Central Universities (No. 21614308) and the Medical Science Research Foundation of Guangdong Province (No. B2012195). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Wang or Jianli Shao.

Additional information

Liang Wang and Jianli Shao contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shao, J., Zhang, X. et al. microRNA-377 suppresses the proliferation of human osteosarcoma MG-63 cells by targeting CDK6. Tumor Biol. 36, 3911–3917 (2015). https://doi.org/10.1007/s13277-014-3034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-3034-2

Keywords

Navigation