Tumor Biology

, Volume 36, Issue 5, pp 3895–3902 | Cite as

Knockdown of Aurora-B alters osteosarcoma cell malignant phenotype via decreasing phosphorylation of VCP and NF-κB signaling

  • Jian Ying He
  • Wei Hong Xi
  • Liang Bo Zhu
  • Xin Hua Long
  • Xuan Yin Chen
  • Jia Min Liu
  • Qin Feng Luo
  • Xiao Ping Zhu
  • Zhi Li Liu
Research Article

Abstract

The aim of this study is to investigate the effects of inhibiting Aurora-B on osteosarcoma (OS) cell malignant phenotype, phosphorylation of valosin-containing protein (VCP), and the activity of NF-κB signaling in vitro. The expressions of Aurora-B and p-VCP proteins were detected by immunohistochemistry in 24 OS tissues, and the relationship between Aurora-B and p-VCP was investigated. The results showed that there was a positive correlation between Aurora-B and p-VCP proteins. The expression of Aurora-B in human OS cell lines U2-OS and HOS cells was inhibited by specific short hairpin RNA (shRNA) lentivirus (AURKB-shRNA lentivirus, Lv-shAURKB) which targeted Aurora-B. The results showed that the phosphorylation of VCP, the activity of NF-κB signaling pathway and the malignant phenotype of OS cells were all suppressed by knockdown of Aurora-B. It indicated that the inhibition of Aurora-B alters OS cells malignant phenotype by downregulating phosphorylation of VCP and activating of the NF-κB signaling pathway in vitro.

Keywords

Osteosarcoma Aurora-B Metastasis Valosin-containing protein (VCP) NF-κB signaling pathway 

Notes

Acknowledgments

The present study was supported by grants from the National Natural Science Foundation of China (no. 81260400), the Natural Science Foundation of Jiangxi Province (no. 20114BAB205093 and 20142BAB205056), and Jiangxi Province Education Department of Science and Technology (no. GJJ12097).

Conflicts of interest

None

Supplementary material

13277_2014_3032_Fig7_ESM.jpg (34 kb)
ESM 1

(JPEG 33 kb)

13277_2014_3032_MOESM1_ESM.bmp (9 mb)
ESM 2 (BMP 9216 kb)
13277_2014_3032_MOESM2_ESM.bmp (9 mb)
ESM 3 (BMP 9216 kb)

References

  1. 1.
    Mialou V, Philip T, Kalifa C, Perol D, Gentet JC, Marec-Berard P, et al. Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome—the French pediatric experience. Cancer. 2005;104(5):1100–9. doi: 10.1002/cncr.21263.CrossRefPubMedGoogle Scholar
  2. 2.
    Hegyi M, Semsei AF, Jakab Z, Antal I, Kiss J, Szendroi M, et al. Good prognosis of localized osteosarcoma in young patients treated with limb-salvage surgery and chemotherapy. Pediatr Blood Cancer. 2011;57(3):415–22. doi: 10.1002/pbc.23172.CrossRefPubMedGoogle Scholar
  3. 3.
    Stokkel MP, Linthorst MF, Borm JJ, Taminiau AH, Pauwels EK. A reassessment of bone scintigraphy and commonly tested pretreatment biochemical parameters in newly diagnosed osteosarcoma. J Cancer Res Clin Oncol. 2002;128(7):393–9. doi: 10.1007/s00432-002-0350-5.CrossRefPubMedGoogle Scholar
  4. 4.
    Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, et al. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem. 2012;287(35):29887–98. doi: 10.1074/jbc.M112.371682.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsuno T, Natsume A, Katsumata S, Mizuno M, Fujita M, Osawa H, et al. Inhibition of Aurora-B function increases formation of multinucleated cells in p53 gene deficient cells and enhances anti-tumor effect of temozolomide in human glioma cells. J Neurooncol. 2007;83(3):249–58. doi: 10.1007/s11060-007-9335-1.CrossRefPubMedGoogle Scholar
  6. 6.
    Pohl A, Azuma M, Zhang W, Yang D, Ning Y, Winder T, et al. Pharmacogenetic profiling of Aurora kinase B is associated with overall survival in metastatic colorectal cancer. Pharmacogenomics J. 2011;11(2):93–9. doi: 10.1038/tpj.2010.18.CrossRefPubMedGoogle Scholar
  7. 7.
    Hetland TE, Nymoen DA, Holth A, Brusegard K, Florenes VA, Kaern J, et al. Aurora B expression in metastatic effusions from advanced-stage ovarian serous carcinoma is predictive of intrinsic chemotherapy resistance. Hum Pathol. 2013;44(5):777–85. doi: 10.1016/j.humpath.2012.08.002.CrossRefPubMedGoogle Scholar
  8. 8.
    Sanchez-Bailon MP, Calcabrini A, Gomez-Dominguez D, Morte B, Martin-Forero E, Gomez-Lopez G, et al. Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal. 2012;24(6):1276–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Li WW, Long GX, Liu DB, Mei Q, Wang JF, Hu GY, et al. Cyclooxygenase-2 inhibitor celecoxib suppresses invasion and migration of nasopharyngeal carcinoma cell lines through a decrease in matrix metalloproteinase-2 and -9 activity. Pharmazie. 2014;69(2):132–7.PubMedGoogle Scholar
  10. 10.
    Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A. In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol. 2014;44(1):27–34. doi: 10.3892/ijo.2013.2159.PubMedGoogle Scholar
  11. 11.
    Liao CL, Lin JH, Lien JC, Hsu SC, Chueh FS, Yu CC, et al. The crude extract of Corni fructus inhibits the migration and invasion of U-2 OS human osteosarcoma cells through the inhibition of matrix metalloproteinase-2/-9 by MAPK signaling. Environ Toxicol. 2013. doi: 10.1002/tox.21894.Google Scholar
  12. 12.
    Tomonaga M, Hashimoto N, Tokunaga F, Onishi M, Myoui A, Yoshikawa H, et al. Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells. Int J Oncol. 2012;40(2):409–17. doi: 10.3892/ijo.2011.1209.PubMedGoogle Scholar
  13. 13.
    Vandermoere F, El Yazidi-Belkoura I, Slomianny C, Demont Y, Bidaux G, Adriaenssens E, et al. The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem. 2006;281(20):14307–13. doi: 10.1074/jbc.M510003200.CrossRefPubMedGoogle Scholar
  14. 14.
    Long XH, Zhang ZH, Liu ZL, Huang SH, Luo QF. Inhibiting valosin-containing protein suppresses osteosarcoma cell metastasis via AKT/nuclear factor of kappa B signaling pathway in vitro. Indian J Pathol Microbiol. 2013;56(3):190–5. doi: 10.4103/0377-4929.120358.CrossRefPubMedGoogle Scholar
  15. 15.
    Dobrynin G, Popp O, Romer T, Bremer S, Schmitz MH, Gerlich DW, et al. Cdc48/p97-Ufd1-Npl4 antagonizes Aurora B during chromosome segregation in HeLa cells. J Cell Sci. 2011;124(Pt 9):1571–80. doi: 10.1242/jcs.069500.CrossRefPubMedGoogle Scholar
  16. 16.
    Ioannou M, Kouvaras E, Stathakis E, Samara M, Koukoulis GK. Aurora B kinase in Hodgkin lymphoma: immunohistochemical pattern of expression in neoplastic Hodgkin and Reed-Sternberg cells. J Mol Histol. 2013. doi: 10.1007/s10735-013-9561-0.PubMedGoogle Scholar
  17. 17.
    Long ZJ, Xu J, Yan M, Zhang JG, Guan Z, Xu DZ, et al. ZM 447439 inhibition of aurora kinase induces Hep2 cancer cell apoptosis in three-dimensional culture. Cell Cycle. 2008;7(10):1473–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14(10):e425–35. doi: 10.1016/S1470-2045(13)70128-1.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jha HC, Lu J, Saha A, Cai Q, Banerjee S, Prasad MA, et al. EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol. 2013;87(22):12121–38. doi: 10.1128/JVI. 02379-13.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marampon F, Gravina GL, Popov VM, Scarsella L, Festuccia C, La Verghetta ME, et al. Close correlation between MEK/ERK and Aurora-B signaling pathways in sustaining tumorigenic potential and radioresistance of gynecological cancer cell lines. Int J Oncol. 2014;44(1):285–94. doi: 10.3892/ijo.2013.2167.PubMedGoogle Scholar
  21. 21.
    Wang Q, Song C, Li CC. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol. 2004;146(1–2):44–57. doi: 10.1016/j.jsb.2003.11.014.CrossRefPubMedGoogle Scholar
  22. 22.
    Rumpf S, Lee SB, Jan LY, Jan YN. Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development. 2011;138(6):1153–60. doi: 10.1242/dev.062703.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hotta K, Nashimoto A, Yasumura E, Suzuki M, Azuma M, Iizumi Y, et al. Vesnarinone suppresses TNFalpha mRNA expression by inhibiting valosin-containing protein. Mol Pharmacol. 2013;83(5):930–8. doi: 10.1124/mol.112.081935.CrossRefPubMedGoogle Scholar
  24. 24.
    Andela VB, Gordon AH, Zotalis G, Rosier RN, Goater JJ, Lewis GD, et al. NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res. 2003;415 Suppl:S75–85. doi: 10.1097/01.blo.0000093048.96273.aa.
  25. 25.
    Felx M, Guyot MC, Isler M, Turcotte RE, Doyon J, Khatib AM, et al. Endothelin-1 (ET-1) promotes MMP-2 and MMP-9 induction involving the transcription factor NF-kappaB in human osteosarcoma. Clin Sci (Lond). 2006;110(6):645–54. doi: 10.1042/CS20050286.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jian Ying He
    • 1
    • 3
  • Wei Hong Xi
    • 1
  • Liang Bo Zhu
    • 1
  • Xin Hua Long
    • 1
  • Xuan Yin Chen
    • 1
  • Jia Min Liu
    • 1
  • Qin Feng Luo
    • 2
  • Xiao Ping Zhu
    • 1
  • Zhi Li Liu
    • 1
  1. 1.The First Affiliated Hospital of Nanchang UniversityNanchangPeople’s Republic of China
  2. 2.Cancer Hospital of Jiangxi ProvinceNanchangPeople’s Republic of China
  3. 3.JiangXi Provincial People’s HospitalNanchangPeople’s Republic of China

Personalised recommendations