Tumor Biology

, Volume 36, Issue 5, pp 3871–3880 | Cite as

Overexpression of VEGF183 promotes murine breast cancer cell proliferation in vitro and induces dilated intratumoral microvessels

  • Huiyong Zhang
  • Ying Chen
  • Binglin Fan
  • Wenfeng Wang
  • Wuling Zhu
Research Article

Abstract

Vascular endothelial growth factor (VEGF) was considered as a critical growth factor for tumor expansion. The roles of VEGF121, VEGF165, and VEGF189 in tumor growth have been intensely investigated; however, involvements of another extracellular matrix (ECM)-binding VEGF isoform, namely VEGF183 (six amino acids shorter than VEGF189 in exon 6a), in physiological or pathological processes are still unclear although the wide tissue distribution. To investigate the role of VEGF183 in carcinogenesis, we generated murine breast cancer cell (EMT-6) clones stably overexpressing VEGF183, VEGF121, VEGF165, and VEGF189 shortened as V183, V121, V165, and V189, respectively. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) results showed that VEGF183, like all other VEGF-overexpressing isoforms except for VEGF121, could enhance the proliferation of mouse breast cancer EMT-6 cells. Immunochemistry results displayed that overexpressing VEGF183 and VEGF189 in EMT-6 cells induced larger proportional dilated microvessels. On the other hand, results from cell wound healing experiments demonstrated that all of the VEGF-overexpressing isoforms could increase the chemotaxis of EMT-6 cells in vitro. In conclusion, our results supported the idea that overexpression of VEGF183 promotes murine breast cancer cell proliferation in vitro and induces dilated intratumoral microvessels, and it plays a dissimilar role in comparison with that of VEGF189.

Keywords

Vascular endothelial growth factor Breast cancer Angiogenesis Overexpression 

Notes

Acknowledgments

This work was supported in part by Basic Science and Frontier Technology Planning Project of Henan Province (Grant No. 142300410027), Educational Commission of Henan Province (Grant No. 12B320021), and Scientific Research Fund of Xinxiang Medical University (Grant No. 2013ZD110). We also thank Dr. Didier Meko’o for helping us polish the manuscript.

References

  1. 1.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25. doi: 10.1210/edrv.18.1.0287.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21(5):687–90. doi: 10.1091/mbc.E09-07-0590.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999;5(5):495–502. doi: 10.1038/8379.CrossRefPubMedGoogle Scholar
  5. 5.
    Sarlos S, Rizkalla B, Moravski CJ, Cao Z, Cooper ME, Wilkinson-Berka JL. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am J Pathol. 2003;163(3):879–87. doi: 10.1016/S0002-9440(10)63448-7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest. 2002;109(3):327–36. doi: 10.1172/JCI14362.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65.PubMedGoogle Scholar
  8. 8.
    Zhang HT, Craft P, Scott PA, Ziche M, Weich HA, Harris AL, et al. Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst. 1995;87(3):213–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, et al. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 1996;56(1):172–81.PubMedGoogle Scholar
  10. 10.
    Cheng SY, Nagane M, Huang HS, Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci U S A. 1997;94(22):12081–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol. 2000;20(19):7282–91.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, et al. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer. 2000;83(1):63–8. doi: 10.1054/bjoc.2000.1279.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Herve MA, Buteau-Lozano H, Vassy R, Bieche I, Velasco G, Pla M, et al. Overexpression of vascular endothelial growth factor 189 in breast cancer cells leads to delayed tumor uptake with dilated intratumoral vessels. Am J Pathol. 2008;172(1):167–78. doi: 10.2353/ajpath.2008.070181.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liang Y, Brekken RA, Hyder SM. Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr Relat Cancer. 2006;13(3):905–19. doi: 10.1677/erc.1.01221.CrossRefPubMedGoogle Scholar
  15. 15.
    Jingjing L, Srinivasan B, Roque RS. Ectodomain shedding of VEGF183, a novel isoform of vascular endothelial growth factor, promotes its mitogenic activity in vitro. Angiogenesis. 2001;4(2):103–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Jingjing L, Xue Y, Agarwal N, Roque RS. Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 1999;40(3):752–9.PubMedGoogle Scholar
  17. 17.
    Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol. 2010;188(4):595–609. doi: 10.1083/jcb.200906044.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhou Z, Reddy K, Guan H, Kleinerman ES. VEGF(165), but not VEGF(189), stimulates vasculogenesis and bone marrow cell migration into Ewing's sarcoma tumors in vivo. Mol Cancer Res. 2007;5(11):1125–32. doi: 10.1158/1541-7786.MCR-07-0174.CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci U S A. 1996;93(16):8502–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pidgeon GP, Barr MP, Harmey JH, Foley DA, Bouchier-Hayes DJ. Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer. 2001;85(2):273–8. doi: 10.1054/bjoc.2001.1876.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169(4):681–91. doi: 10.1083/jcb.200409115.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cressey R, Wattananupong O, Lertprasertsuke N, Vinitketkumnuen U. Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis. BMC Cancer. 2005;5:128. doi: 10.1186/1471-2407-5-128.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Catena R, Muniz-Medina V, Moralejo B, Javierre B, Best CJ, Emmert-Buck MR, et al. Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. Int J Cancer. 2007;120(10):2096–109. doi: 10.1002/ijc.22461.CrossRefPubMedGoogle Scholar
  24. 24.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336–43.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Huiyong Zhang
    • 1
  • Ying Chen
    • 2
  • Binglin Fan
    • 3
  • Wenfeng Wang
    • 1
  • Wuling Zhu
    • 3
  1. 1.College of Life Science and BiotechnologyXinxiang Medical UniversityXinxiangPeople’s Republic of China
  2. 2.School of Life Science and BiotechnologyHenan Institute of Science and TechnologyXinxiangPeople’s Republic of China
  3. 3.School of Basic Medical SciencesXinxiang Medical UniversityXinxiangPeople’s Republic of China

Personalised recommendations