Tumor Biology

, Volume 36, Issue 5, pp 3831–3841 | Cite as

The methylation of a panel of genes differentiates low-grade from high-grade gliomas

  • Aleksandra Majchrzak-Celińska
  • Jarosław Paluszczak
  • Marlena Szalata
  • Anna-Maria Barciszewska
  • Stanisław Nowak
  • Robert Kleszcz
  • Adam Sherba
  • Wanda Baer-Dubowska
Research Article


Epigenetic changes play an important role in the pathogenesis of gliomas and have the potential to become clinically useful biomarkers. The aim of this study was the evaluation of the profile of promoter methylation of 13 genes selected based on their anticipated diagnostic and/or prognostic value. Methylation-specific PCR (MSP) was used to assess the methylation status of MGMT, ERCC1, hMLH1, ATM, CDKN2B (p15INK4B), p14ARF, CDKN2A (p16INK4A), RASSF1A, RUNX3, GATA6, NDRG2, PTEN, and RARβ in a subset of 95 gliomas of different grades. Additionally, the methylation status of MGMT and NDRG2 was analyzed using pyrosequencing (PSQ). The results revealed that the methylation index of individual glioma patients correlates with World Health Organization (WHO) tumor grade and patient’s age. RASSF1A, RUNX3, GATA6, and MGMT were most frequently methylated, whereas the INK4B-ARF-INK4A locus, PTEN, RARβ, and ATM were methylated to a lesser extent. ERCC1, hMLH1, and NDRG2 were unmethylated. RUNX3 methylation correlated with WHO tumor grade and patient’s age. PSQ confirmed significantly higher methylation levels of MGMT and NDRG2 as compared with normal, non-cancerous brain tissue. To conclude, DNA methylation of a whole panel of selected genes can serve as a tool for glioma aggressiveness prediction.


Glioma DNA methylation biomarkers RASSF1A RUNX3 GATA6 MGMT 



This study was supported by the National Science Centre of Poland grant no. N N405683240 and a scholarship support for Ph.D. students specializing in majors strategic for Greater Poland’s development, Sub-measure 8.2.2 Human Capital Operational Programme, co-financed by the European Union under the European Social Fund.

Conflicts of interest



  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol. 2014;232(2):165–77.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barciszewska AM, Nowak S, Naskręt-Barciszewska MZ. The degree of global DNA hypomethylation in peripheral blood correlates with that in matched tumor tissues in several neoplasia. PLoS One. 2014;9(3):e92599.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Majchrzak-Celińska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska AM, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet. 2013;54(3):335–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li M, Li J, Liu L, Li W, Yang Y, Yuan J. MicroRNA in human glioma. Cancers (Basel). 2013;5(4):1306–31.CrossRefGoogle Scholar
  7. 7.
    Mummaneni P, Shord SS. Epigenetics and oncology. Pharmacotherapy. 2014;34(5):495–505.CrossRefPubMedGoogle Scholar
  8. 8.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.CrossRefPubMedGoogle Scholar
  10. 10.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Cankovic M, Nikiforova MN, Snuderl M, Adesina AM, Lindeman N, et al. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn. 2013;15(5):539–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu ZG, Chen HY, Cheng JJ, Chen ZP, Li XN, et al. Relationship between methylation status of ERCC1 promoter and radiosensitivity in glioma cell lines. Cell Biol Int. 2009;33(10):1111–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen HY, Shao CJ, Chen FR, Kwan AL, Chen ZP. Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer. 2010;126(8):1944–54.PubMedGoogle Scholar
  14. 14.
    Gömöri E, Pál J, Mészáros I, Dóczi T, Matolcsy A. Epigenetic inactivation of the hMLH1 gene in progression of gliomas. Diagn Mol Pathol. 2007;16(2):104–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun. 2006;344(3):821–6.CrossRefPubMedGoogle Scholar
  16. 16.
    He J, Qiao JB, Zhu H. p14ARF promoter region methylation as a marker for gliomas diagnosis. Med Oncol. 2011;28(4):1218–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Wakabayashi T, Natsume A, Hatano H, Fujii M, Shimato S, et al. p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery. 2009;64(3):455–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Avci CB, Dodurga Y, Susluer SY, Sýgva ZO, Yucebas M, et al. Promoter hypermethylation-mediated down-regulation of RUNX3 gene in human brain tumors. Ir J Med Sci. 2013;PMID: 23934435.Google Scholar
  19. 19.
    Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene. 2007;26(4):583–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Tepel M, Roerig P, Wolter M, Gutmann DH, Perry A, et al. Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. Int J Cancer. 2008;123(9):2080–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Skiriute D, Vaitkiene P, Saferis V, Asmoniene V, Skauminas K, et al. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma. BMC Cancer. 2012;12:218.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, et al. High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med. 2010;16(1–2):1–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, et al. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 2012;14(9):1146–52.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Håvik AB, Brandal P, Honne H, Dahlback HS, Scheie D, et al. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. J Transl Med. 2012;10:36.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen PC, Tsai MH, Yip SK, Jou YC, Ng CF, et al. Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine. BMC Med Genomics. 2011;4:45.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013;14(9):17643–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuo LT, Tsai SY, Chang CC, Kuo KT, Huang AP, et al. Genetic and epigenetic alterations in primary-progressive paired oligodendroglial tumors. PLoS One. 2013;8:6.Google Scholar
  29. 29.
    Paluszczak J, Misiak P, Wierzbicka M, Woźniak A, Baer-Dubowska W. Frequent hypermethylation of DAPK, RARbeta, MGMT, RASSF1A and FHIT in laryngeal squamous cell carcinomas and adjacent normal mucosa. Oral Oncol. 2011;47(2):104–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Wemmert S, Bettscheider M, Alt S, Ketter R, Kammers K, et al. p15 promoter methylation—a novel prognostic marker in glioblastoma patients. Int J Oncol. 2009;34(6):1743–8.PubMedGoogle Scholar
  31. 31.
    Klein O, Grignon Y, Civit T, Auque J, Marchal JC. Methylation status of RARbeta gene promoter in low and high grade cerebral glioma. Comparison with normal tissue. Immuno-histochemical study of nuclear RARbeta expression in low and high grade cerebral glioma cells. Comparison with normal cells. 48 tumors. Neurochirurgie. 2005;51(3–4 Pt 1):147–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMedGoogle Scholar
  33. 33.
    van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol. 2009;27(35):5881–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Christians A, Hartmann C, Benner A, Meyer J, von Deimling A, et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS One. 2012;7:3.CrossRefGoogle Scholar
  35. 35.
    Preusser M, Berghoff AS, Manzl C, Filipits M, Weinhäusel A, et al. Clinical Neuropathology practice news 1–2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin Neuropathol. 2014;33(1):6–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, et al. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005;65(16):7121–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Li W, Chu D, Chu X, Meng F, Wei D, et al. Decreased expression of NDRG2 is related to poor overall survival in patients with glioma. J Clin Neurosci. 2011;18(11):1534–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Piepoli A, Cotugno R, Merla G, Gentile A, Augello B, et al. Promoter methylation correlates with reduced NDRG2 expression in advanced colon tumour. BMC Med Genomics. 2009;2:11.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Aleksandra Majchrzak-Celińska
    • 1
  • Jarosław Paluszczak
    • 1
  • Marlena Szalata
    • 2
  • Anna-Maria Barciszewska
    • 3
  • Stanisław Nowak
    • 3
  • Robert Kleszcz
    • 1
  • Adam Sherba
    • 1
  • Wanda Baer-Dubowska
    • 1
  1. 1.Department of Pharmaceutical BiochemistryPoznan University of Medical SciencesPoznańPoland
  2. 2.Department of Biochemistry and BiotechnologyPoznan University of Life SciencesPoznańPoland
  3. 3.Department and Clinic of Neurosurgery and NeurotraumatologyPoznan University of Medical SciencesPoznańPoland

Personalised recommendations