Over-expression of miR-10b in NPC patients: correlation with LMP1 and Twist1

Abstract

Aberrant expression of miR-10b has been described in many cancers but remains unexplored in nasopharyngeal carcinoma (NPC). Therefore, we aimed to study the miR-10b expression level in 43 NPC biopsies collected from Tunisian patients and three NPC xenografts. Then, we investigated the correlation between miR-10b expression and its upstream regulators LMP1/Twist1 as well as its adjacent gene HoxD4. We showed that miR-10b was significantly up-regulated in NPC biopsies compared to non-tumor nasopharyngeal tissues (fold change 153; p = 0.004) and associated with advanced clinical stage and young age at diagnosis (p = 0.005 and p = 0.011, respectively). In addition, over-expression of miR-10b was positively associated with the transcription factor Twist1 as well as the EBV oncoprotein LMP1 (fold change 6.32; p = 0.014, fold change 6.58; p = 0.01 respectively). Furthermore, higher level of miR-10b was observed in tumors with simultaneous expression of LMP1 and Twist1, compared to those expressing only Twist1 (fold change 2.49; p = 0.033). Meanwhile, the analysis of the link between miR-10b and its neighbor gene HoxD4 did not show any significant correlation (Fisher test p = 0.205; Mann–Whitney test p = 0.676). This study reports the first evidence of miR-10b over-expression in NPC patients. Furthermore, our findings can support hsa-miR-10b gene regulation through LMP1/Twist1 in NPC malignancy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):421–9.

    Article  PubMed  Google Scholar 

  2. 2.

    Boussen H, Bouaouina N, Mokni-Baizig N, Gamoudi A, Chouchane L, Benna F, et al. Nasopharyngeal carcinoma. Recent data. Pathol Biol. 2005;53(1):45–51.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wang HY, Sun BY, Zhu ZH, Chang ET, To KF, Hwang JS, et al. Eight-signature classifier for prediction of nasopharyngeal carcinoma survival. J Clin Oncol. 2011;29:4516–25.

    Article  PubMed  Google Scholar 

  4. 4.

    Chen J, Hu CF, Hou JH, Shao Q, Yan LX, Zhu XF, et al. Epstein–Barr virus encoded latent membrane protein 1 regulates mTOR signaling pathway genes which predict poor prognosis of nasopharyngeal carcinoma. J Transl Med. 2010;8:30.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22:144–53.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995;80:389–99.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zhao Y, Wang Y, Zeng S, Hu X. LMP1 expression is positively associated with metastasis of nasopharyngeal carcinoma: evidence from a meta-analysis. J Clin Pathol. 2012;65:41–5.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kondo S, Wakisaka N, Muramatsu M, Zen Y, Endo K, Murono S, et al. Epstein–Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. J Virol. 2011;85:11255–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Galasso M, Sandhu SK, Volinia S. MicroRNA expression signatures in solid malignancies. Cancer J. 2012;18(3):238–43.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Tran N, McLean T, Zhang X, Zhoao CJ, Thomson JM, O'Brien C, et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun. 2007;358:12–7.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;24(6):1002–11.

    Article  Google Scholar 

  15. 15.

    Yu H, Lu J, Zuo L, Yan Q, Yu Z, Li X, et al. Epstein–Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol. 2012;86:3088–99.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L, et al. Epstein–Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene. 2010;29:1316–28.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Du ZM, Hu LF, Wang HY, Yan LX, Zeng YX, Shao JY, et al. Upregulation of miR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS One. 2011;6(4):e19137.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yang GD, Huang TJ, Peng LX, Yang CF, Liu RY, Huang HB, et al. Epstein–Barr Virus_Encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and Fas-L. Plos One. 2013;8(10):e78355.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, et al. MicroRNA-10b induced by Epstein–Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett. 2010;299(1):29–36.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285(11):7986–94.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sun XJ, Liu H, Zhang P, Zhang XD, Jiang ZW, Jiang CC. miR-10b promotes migration and invasion in nasopharyngeal carcinoma cells. Asian Pac J Cancer Prev. 2013;14(9):5533–7.

    Article  PubMed  Google Scholar 

  23. 23.

    Chai G, Liu N, Ma J, Li H, Oblinger JL, Prahalad AK, et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci. 2010;101:1997–2004.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human gliomas growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mussnich P, D’Angelo D, Leone V, Croce CM, Fusco A. The high mobility group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression. Mol Oncol. 2013;7(3):531–42.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, et al. microRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011;18(7):1089–98.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fleming ID, Cooper JS, Henson DE, Hutter RV, Kennedy BJ, et al. American Joint Committee on Cancer “cancer staging manual”. 5th ed. Philadelphia: Lippincott-Raven; 1997. p. pp. 31–9.

    Google Scholar 

  28. 28.

    Sobin LH and Wittekind CH, Eds. International Union Against Cancer. TNM classification of malignant tumours. Wiley-Liss, New York, 5th edition, 1997. pp. 25–32.

  29. 29.

    Chan JKC, Pilch BZ, Kuo TT, Wenig BM, Lee AWM. Tumors of the nasopharynx: introduction. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. Pathology and genetics of head and neck tumours (World Health Organization classification of tumours). Lyon: IARC; 2005. p. 82–4.

    Google Scholar 

  30. 30.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. Methods. 2001;25(4):402–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hafez MM, Hassan ZK, Zekri AR, Gaber AA, Al Rejaie SS, Sayed-Ahmed MM, et al. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev. 2012;13(2):591–8.

    Article  PubMed  Google Scholar 

  32. 32.

    Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant gliomas and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125(6):1407–13.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–58.

    PubMed  Google Scholar 

  34. 34.

    Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S. MicroRNA-10b pleiotropically regulates invasion, angiogenecity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012;3:e398.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Khabir A, Sellami A, Sakka M, Ghorbel AM, Daoud J, Frikha M, et al. Contrasted frequencies of p53 accumulation in the two age groups of North African nasopharyngeal carcinoma. Clin Cancer Res. 2000;6(10):3932–6.

    CAS  PubMed  Google Scholar 

  36. 36.

    Khabir A, Ghorbel A, Daoud J, Frikha M, Drira MM, Laplanche A, et al. Similar BCL-X but different BCL-2 levels in the two age groups of North African nasopharyngeal carcinomas. Cancer Detect Prev. 2003;27(4):250–5.

    Article  PubMed  Google Scholar 

  37. 37.

    Karray H, Ayadi W, Fki L, Hammami A, Daoud J, Drira MM, et al. Comparison of three different serological techniques for primary diagnosis and monitoring of nasopharyngeal carcinoma in two age groups from Tunisia. J Med Virol. 2005;75(4):593–602.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ayadi W, Karray-Hakim H, Feki L, Khabir A, Boudawara T, Ghorbel A, et al. IgA antibodies against the Epstein–Barr nuclear antigen1 as a valuable biomarker for the diagnosis of nasopharyngeal carcinoma in Tunisian patients. J Med Virol. 2009;81(8):1412–21.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Downing NL, Wolden S, Wong P, Petrik DW, Hara W, Le QT. Comparison of treatment results between adult and juvenile nasopharyngeal carcinoma. Int J Radiat Oncol, Biol, Phys. 2009;75(4):1064–70.

    Article  Google Scholar 

  40. 40.

    Sultan I, Casanova M, Ferrari A, Rihani R, Rodriguez-Galindo C. Differential features of nasopharyngeal carcinoma in children and adults: a SEER study. Pediatr Blood Cancer. 2010;55(2):279–84.

    Article  PubMed  Google Scholar 

  41. 41.

    Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K, et al. miR-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol. 2012;19(9):3065–71.

    Article  PubMed  Google Scholar 

  42. 42.

    Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, et al. microRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumor boil. 2012;33(5):1455–65.

    CAS  Article  Google Scholar 

  43. 43.

    Wang YY, Ye ZY, Zhao ZS, Li L, Wang YX, Tao HQ, et al. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum Pathol. 2013;44(7):1278–85.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M, et al. Twist and epithelial–mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res. 2007;67(5):1970–8.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Kim K, Lee HC, Park JL, Kim M, Kim SY, Noh SM, et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011;6(6):740–51.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Tunisian Ministry of High Education and Scientific Research. We wish to thank Pr Adnane Hammami for allowing us to perform the RT-q-PCR experiments in the microbiology laboratory at the School of Medicine of University of Sfax.

Conflicts of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raja Mokdad-Gargouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

figure5

High resulotion image (GIF 47 kb)

figure6

High resulotion image (GIF 79 kb)

Supplementary Fig. S1

Generating a standard curve to assess reaction efficiency. A Amplification curves and their corresponding melt curves of qPCR reactions using a series of tenfold dilutions of specific cDNA (1, 1/10, 1/100, 1/1000, and 1/10000) of miR-10b (A1) and U6 (A2). B Standard curve with the Ct plotted against the log of the starting quantity of template for each dilution. The equation of the generated curve is shown above the graph. The calculated efficiency was 103 and 101 % for miR10b and U6, respectively (TIFF 2886 kb)

Supplementary Fig. S2

Regulatory network of miR-10b. This schematic representation is created within the open informatic’s site MirOB (http://mirob.interactome.ru/microRNA_databases) (TIFF 4773 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allaya, N., Khabir, A., Sallemi-Boudawara, T. et al. Over-expression of miR-10b in NPC patients: correlation with LMP1 and Twist1. Tumor Biol. 36, 3807–3814 (2015). https://doi.org/10.1007/s13277-014-3022-6

Download citation

Keywords

  • NPC
  • miR-10b
  • LMP1
  • Twist1
  • Juvenile form