Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 489–494 | Cite as

The tumor suppressor protein p150Sal2 in carcinogenesis

Review

Abstract

The transcription factor p150Sal2, the product of the SALL2 gene, was first identified as a binding target of the oncogenic mouse polyomavirus T antigen. However, mouse polyomavirus is not the only oncogenic virus that targets p150Sal2; the human papillomavirus E6 protein also targets this cellular protein in order to overcome p150Sal2-mediated growth arrest. Studies have demonstrated that p150Sal2 recognizes GC-rich regions of the promoter and transcriptionally induces p21Cip1/Waf1 and BAX in human ovarian epithelial cancer cells, resulting in cell growth arrest and apoptosis. Although the p150Sal2 protein is strongly expressed in surface epithelial cells of the ovary, immunostaining experiments showed that expression of p150Sal2 was lost in 90 % of 210 human ovarian carcinomas, supporting an important tumor suppressive role for p150Sal2 in the human ovary. Mechanisms of silencing SALL2 in OVCA cell lines and primary tumors and possible therapeutic approaches for ovarian carcinoma are discussed in this review.

Keywords

Mouse polyomavirus Human papillomavirus SALL2 Transcriptional targets Ovarian carcinoma Promoter methylation 

Notes

Acknowledgments

This work was supported by a Texas A&M University-Kingsville Research Award (to CKS; 160330–00016) and the research fund of Hanyang University (HY-2014-N) to HY.

References

  1. 1.
    de Celis JF, Barrio R. Regulation and function of Spalt proteins during animal development. Int J Dev Biol. 2009;53:1385–98.CrossRefPubMedGoogle Scholar
  2. 2.
    Sweetman D, Munsterberg A. The vertebrate spalt genes in development and disease. Dev Biol. 2006;293:285–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Kohlhase J, Taschner PE, Burfeind P, Pasche B, Newman B, Blanck C, et al. Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am J Hum Genet. 1999;64:435–45.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71:1195–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, et al. SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat. 2005;26:176–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Yamaguchi YL, Tanaka SS, Kumagai M, Fujimoto Y, Terabayashi T, Matsui Y, Nishinakamura R: Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem cells 2014Google Scholar
  7. 7.
    Tanimura N, Saito M, Ebisuya M, Nishida E, Ishikawa F. Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells. J Biol Chem. 2013;288:5027–38.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Wang L, Yang A, Jiang P, Wang M. Up-regulation of SALL4 associated with poor prognosis in gastric cancer. Hepatogastroenterology. 2014;61:1459–64.Google Scholar
  9. 9.
    Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Parrish M, Ott T, Lance-Jones C, Schuetz G, Schwaeger-Nickolenko A, Monaghan AP. Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Mol Cell Biol. 2004;24:7102–12.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Melo J, Peng GH, Chen S, Blackshaw S. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development. 2011;138:2325–36.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F, et al. Mutation of Sall2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet. 2014;23:2511–26.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li D, Dower K, Ma Y, Tian Y, Benjamin TL. A tumor host range selection procedure identifies p150(sal2) as a target of polyoma virus large t antigen. Proc Natl Acad Sci U S A. 2001;98:14619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li D, Tian Y, Ma Y, Benjamin T. p150(SAL2) is a p53-independent regulator of p21(WAF1/CIP). Mol Cell Biol. 2004;24:3885–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ma Y, Li D, Chai L, Luciani AM, Ford D, Morgan J, et al. Cloning and characterization of two promoters for the human HSAL2 gene and their transcriptional repression by the Wilms tumor suppressor gene product. J Biol Chem. 2001;276:48223–30.PubMedGoogle Scholar
  16. 16.
    Liu H, Adler AS, Segal E, Chang HY. A transcriptional program mediating entry into cellular quiescence. PLoS Genet. 2007;3:e91.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sung CK, Li D, Andrews E, Drapkin R, Benjamin T. Promoter methylation of the SALL2 tumor suppressor gene in ovarian cancers. Mol Oncol. 2013;7:419–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Howley PM, Livingston DM. Small DNA tumor viruses: large contributors to biomedical sciences. Virology. 2009;384:256–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Benjamin TL. Polyoma virus: old findings and new challenges. Virology. 2001;289:167–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Benjamin TL. Polyoma viruses. In: Fox JG, Davission MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL, editors. In the mouse in biomedical research. Waltham: Academic; 2007. p. 105–39.CrossRefGoogle Scholar
  21. 21.
    Imperiale MJ, Major, E.O.: Polyomaviruses; in Knipe DM, Howley, P.M. (ed) Fields virology. Philadelphia, PA, Lippincott Williams & Wilkins, 2007, vol 2, pp 2263–2298.Google Scholar
  22. 22.
    Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by simian virus 40 and murine polyoma virus t antigens. Semin Cancer Biol. 2009;19:218–28.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev. 2009;73:542–63. Table of Contents.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Freund R, Bauer PH, Crissman HA, Bradbury EM, Benjamin TL. Host range and cell cycle activation properties of polyomavirus large T-antigen mutants defective in pRB binding. J Virol. 1994;68:7227–34.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA, Rolland T, et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature. 2012;487:491–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gu H, Li D, Sung CK, Yim H, Troke P, Benjamin T: DNA-binding and regulatory properties of the transcription factor and putative tumor suppressor p150(sal2). Biochim Biophys Acta 2011Google Scholar
  27. 27.
    Parroche P, Touka M, Mansour M, Bouvard V, Thepot A, Accardi R, et al. Human papillomavirus type 16 E6 inhibits p21(WAF1) transcription independently of p53 by inactivating p150(Sal2). Virology. 2011;417:443–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Sung CK, Yim H, Gu H, Li D, Andrews E, Duraisamy S, et al. The polyoma virus large T binding protein p150 is a transcriptional repressor of c-MYC. PLoS One. 2012;7:e46486.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chai L. The role of HSAL (SALL) genes in proliferation and differentiation in normal hematopoiesis and leukemogenesis. Transfusion. 2011;51 Suppl 4:87S–93.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pincheira R, Baerwald M, Dunbar JD, Donner DB. Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. EMBO J. 2009;28:261–73.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bae SC, Choi JK. Tumor suppressor activity of RUNX3. Oncogene. 2004;23:4336–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Chmelarova M, Krepinska E, Spacek J, Laco J, Beranek M, Palicka V. Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol. 2013;15:160–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Jha AK, Nikbakht M, Jain V, Capalash N, Kaur J. p16(INK4A) and p15(INK4B) gene promoter methylation in cervical cancer patients. Oncol Lett. 2012;3:1331–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kang YH, Lee HS, Kim WH. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest. 2002;82:285–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Nielsen TO, Hsu FD, O’Connell JX, Gilks CB, Sorensen PH, Linn S, et al. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol. 2003;163:1449–56.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Estilo CL, Oc P, Talbot S, Socci ND, Carlson DL, Ghossein R, et al. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009;9:11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Alagaratnam S, Lind GE, Kraggerud SM, Lothe RA, Skotheim RI. The testicular germ cell tumour transcriptome. Int J Androl. 2011;34:e133–50. discussion e150-131.CrossRefPubMedGoogle Scholar
  38. 38.
    Sung CK, Dahl J, Yim H, Rodig S, Benjamin TL. Transcriptional and post-translational regulation of the quiescence factor and putative tumor suppressor p150(Sal2). FASEB J. 2011;25:1275–83.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Farkas C, Martins CP, Escobar D, Hepp MI, Castro AF, Evan G, et al. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress. PLoS One. 2013;8:e73817.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bandera CA, Takahashi H, Behbakht K, Liu PC, LiVolsi VA, Benjamin I, et al. Deletion mapping of two potential chromosome 14 tumor suppressor gene loci in ovarian carcinoma. Cancer Res. 1997;57:513–5.PubMedGoogle Scholar
  41. 41.
    Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Cho KR, Shih Ie M. Ovarian cancer. Annu Rev Pathol. 2009;4:287–313.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tycko B. Epigenetic gene silencing in cancer. J Clin Invest. 2000;105:401–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Biological and Health SciencesTexas A&M University-KingsvilleKingsvilleUSA
  2. 2.Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and TechnologyHanyang UniversityAnsanSouth Korea

Personalised recommendations