Advertisement

Tumor Biology

, Volume 36, Issue 5, pp 3763–3773 | Cite as

MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2

  • Fan Yang
  • Wei Wang
  • Chunhui Zhou
  • Wenjin Xi
  • Lu Yuan
  • Xu Chen
  • Yufang Li
  • Angang Yang
  • Jianning Zhang
  • Tao Wang
Research Article

Abstract

miR-221/222 are two highly homologous microRNAs that are frequently upregulated in solid tumors. However, the effects of miR-221/222 in malignant gliomas have not been investigated thoroughly. In this study, we found that miR-221/222 were significantly upregulated in human glioma samples and glioma cell lines. Both gain- and loss-of-function studies showed that miR-221/222 regulate cell proliferation, the cell cycle and apoptosis, in addition to, invasion, metastasis, and angiogenesis in glioma cell lines. Subsequent investigations revealed that TIMP2 is a direct target of miR-221/222, and overexpression of TIMP2 reduced the miR-221/222-mediated invasion, metastasis, and angiogenesis of glioma cells. Taken together, our results suggest that the suppression of miR-221/222 may be a feasible approach for inhibiting the malignant behaviors of glioma.

Keywords

miR-221/222 TIMP2 Gliomas Invasion and metastasis Angiogenesis 

Abbreviations

VEGF

Vascular endothelial growth factor

TIMPs

Tissue inhibitors of metalloproteinases

MMPs

Metallopeptidases

ECM

Extracellular matrix

HUVECs

Human umbilical vein endothelial cells

Notes

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (81172289 and 81472633).

Conflicts of interest

None

References

  1. 1.
    Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19(1):1–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lu S, Mukkada VA, Mangray S, Cleveland K, Shillingford N, Schorl C, et al. MicroRNA profiling in mucosal biopsies of eosinophilic esophagitis patients pre and post treatment with steroids and relationship with mRNA targets. PLoS One. 2012;7(7):e40676.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci. 2004;101(9):2999–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang TQ, Luo XJ, Wu TF, Ding DD, Zhao ZH, Chen GL, et al. miR-16 inhibits glioma cell growth and invasion through the suppression of BCL2 and NF-kappaB1/MMP-9 signaling pathway. Cancer Sci. 2014. doi: 10.1111/cas.12351.Google Scholar
  6. 6.
    Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;37(1–2):45–51.CrossRefGoogle Scholar
  7. 7.
    Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, et al. The ZEB1/miR-200 feedback loop controls notch signalling in cancer cells. EMBO J. 2011;30(4):770–82.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Wang X, Zhang J, Sun G, Luo H, Kang C, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol. 2012;106(2):217–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhong Q, Wang T, Lu P, Zhang R, Zou J, Yuan S. miR-193b promotes cell proliferation by targeting Smad3 in human glioma. J Neurosci Res. 2014. doi: 10.1002/jnr.23339.Google Scholar
  11. 11.
    Guo M, Jiang Z, Zhang X, Lu D, Ha AD, Sun J, Du W, Wu Z, Hu L, Khadarian K, Shen J, Lin Z. miR-656 inhibits glioma tumorigenesis through repression of BMPR1A. Carcinogenesis. 2014Google Scholar
  12. 12.
    Li Y, Wang Y, Yu L, Sun C, Cheng D, Yu S, et al. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Lett. 2013;339(2):260–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen L, Wang X, Wang H, Li Y, Yan W, Han L, et al. miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. Eur J Cancer. 2012;48(16):3104–11.CrossRefPubMedGoogle Scholar
  14. 14.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27 (Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;26(15):3699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang C, Zhang J, Zhang A, Wang Y, Han L, You Y, et al. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol. 2010;37(6):1621–6.PubMedGoogle Scholar
  16. 16.
    Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, del Basso De Caro M, et al. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPμ. Oncogene. 2012;31(7):858–68.CrossRefPubMedGoogle Scholar
  17. 17.
    Folkman J. Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg. 2007;42(1):1–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Fu X, Wang Q, Chen J, Huang X, Chen X, Cao L, et al. Clinical significance of miR-221 and its inverse correlation with p27Kip1 in hepatocellular carcinoma. Mol Biol Rep. 2011;38(5):3029–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27(43):5651–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst. 2010;102(10):706–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G. Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J. 2009;276(12):3269–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Cruz-Munoz W, Khokha R. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 2008;45(3):291–338.CrossRefPubMedGoogle Scholar
  28. 28.
    Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994;13(6):1263–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16(6):498–509.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, et al. Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem. 2011;286(49):42292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 2012;10:119.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blavier L, Henriet P, Imren S, Declerck YA. Tissue inhibitors of matrix metalloproteinases in cancer. Ann N Y Acad Sci. 1999;878:108–19.CrossRefPubMedGoogle Scholar
  33. 33.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, et al. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol. 2004;167(4):757–67.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Levicar N, Nuttall RK, Lah TT. Proteases in brain tumour progression. Acta Neurochir (Wien). 2003;145(9):825–38.CrossRefGoogle Scholar
  36. 36.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A. 2000;97(8):3884–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003;114(2):171–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Seo DW, Li H, Qu CK, Oh J, Kim YS, Diaz T, et al. Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem. 2006;281(6):3711–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Chen L, Zhang K, Shi Z, Zhang A, Jia Z, Wang G, et al. A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo. Oncol Rep. 2014;31(4):1573–80.PubMedGoogle Scholar
  42. 42.
    Fan YC, Mei PJ, Chen C, Miao FA, Zhang H, Li ZL. MiR-29c inhibits glioma cell proliferation, migration, invasion and angiogenesis. J Neurooncol. 2013;115(2):179–88.CrossRefPubMedGoogle Scholar
  43. 43.
    Valster A, Tran NL, Nakada M, Berens ME, Chan AY, et al. Cell migration and invasion assays. Methods. 2005;37:208–15.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fan Yang
    • 1
    • 2
    • 4
  • Wei Wang
    • 1
  • Chunhui Zhou
    • 2
  • Wenjin Xi
    • 1
  • Lu Yuan
    • 3
  • Xu Chen
    • 1
  • Yufang Li
    • 1
  • Angang Yang
    • 1
  • Jianning Zhang
    • 2
  • Tao Wang
    • 1
  1. 1.State Key Laboratory of Cancer Biology, Department of ImmunologyFourth Military Medical UniversityXi’anChina
  2. 2.Department of NeurosurgeryNavy General HospitalBeijingChina
  3. 3.Department of Immunology and Pathogenic Biology, School of MedicineXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of Neurosurgery, Xijing HospitalFourth Military Medical UniversityXi’anChina

Personalised recommendations