Tumor Biology

, Volume 36, Issue 5, pp 3717–3726 | Cite as

Role of EHD2 in migration and invasion of human breast cancer cells

  • Xiaojing Yang
  • Hanru Ren
  • Li Yao
  • Xueyu Chen
  • Aina He
Research Article

Abstract

Eps15 homology domain-containing 2 (EHD2) is a tumor suppressor gene, overexpressed in several solid tumors, including ovarian cancer and esophageal squamous cell carcinoma. The current study examined the expression and the role of EHD2 in human breast cancer. EHD2 expression was determined by Western blot and immunohistochemistry (IHC) in 80 breast cancer and paired noncancerous breast tissues. Correlations between clinicopathologic variables, overall survival, and EHD2 expression were analyzed. We investigated the role of EHD2 in breast cancer migration and invasion by wound healing assay and trans-well invasion assays. A notably lower level of EHD2 expression was found in breast cancer tissues. EHD2 expression was associated with histological grade, lymph node metastasis, and tumor size. Expression of EHD2 was found to be an independent prognostic factor in breast cancer patients. Furthermore, overexpression of EHD2 suppressed, while elimination of EHD2 promoted, the migration and invasion of breast cancer cells. Molecular data showed that EHD2 inhibited breast cancer migration and invasion probably by dampening the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). Downregulation of EHD2 was associated with migration and invasion by abrogating the expression of Rac1 in breast cancer patients. EHD2 may serve as a prognostic marker in breast cancer.

Keywords

EHD2 Rac1 Migration Invasion Breast cancer 

Notes

Acknowledgments

We thank Depeng Zhao, from the Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, for his helpful discussion and careful revision of the English manuscript.

Conflicts of interest

None

References

  1. 1.
    Pan F, Hong LQ. Insulin promotes proliferation and migration of breast cancer cells through the extracellular regulated kinase pathway. Asian Pac J Cancer Prev. 2014;15(15):6349–52.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.CrossRefPubMedGoogle Scholar
  3. 3.
    Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen PI, Schauer K, Kong C, Harding AR, Goud B, Stahl PD. Rab5 isoforms orchestrate a "division of labor" in the endocytic network; Rab5C modulates Rac-mediated cell motility. PLoS ONE. 2014;9(2):e90384.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Benjamin S, Weidberg H, Rapaport D, Pekar O, Nudelman M, Segal D, et al. EHD2 mediates trafficking from the plasma membrane by modulating Rac1 activity. Biochem J. 2011;439(3):433–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Naslavsky N, Caplan S. C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH? J Cell Sci. 2005;118(Pt 18):4093–101.CrossRefPubMedGoogle Scholar
  9. 9.
    Desmond JC, Raynaud S, Tung E, Hofmann WK, Haferlach T, Koeffler HP. Discovery of epigenetically silenced genes in acute myeloid leukemias. Leukemia. 2007;21(5):1026–34.PubMedGoogle Scholar
  10. 10.
    Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol. 2006;103(2):405–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, et al. A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics. 2000;64(1):44–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Li M, Yang X, Zhang J, Shi H, Hang Q, Huang X, et al. Effects of EHD2 interference on migration of esophageal squamous cell carcinoma. Med Oncol. 2013;30(1):396.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Yang S, Ni Q, He S, Zhao Y, Yuan Q, et al. Overexpression of forkhead box J2 can decrease the migration of breast cancer cells. J Cell Biochem. 2012;113(8):2729–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, Liu F, Mao F, Hang Q, Huang X, He S, et al. Interaction with cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) stabilizes C-terminal binding protein 2 (CtBP2) and promotes cancer cell migration. J Biol Chem. 2013;288(13):9028–34.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin CW, Sun MS, Liao MY, Chung CH, Chi YH, Chiou LT et al. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis. 2014;35(11):2425–5.Google Scholar
  16. 16.
    Elsayed HE, Akl MR, Ebrahim HY, Sallam AA, Haggag EG, Kamal AM et al. Discovery, optimization, and pharmacophore modeling of oleanolic acid and analogues as breast cancer cell migration and invasion inhibitors through targeting Brk/Paxillin/Rac1 axis. Chem Biol Drug Des. 2014. doi: 10.1111/cbdd.12380.
  17. 17.
    Kim JS, Kang CG, Kim SH, Lee EO. Rhapontigenin suppresses cell migration and invasion by inhibiting the PI3K-dependent Rac1 signaling pathway in MDA-MB-231 human breast cancer cells. J Nat Prod. 2014;77(5):1135–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang J, King WG, Dillon S, Hall A, Feig L, Rittenhouse SE. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem. 1993;268(30):22251–4.PubMedGoogle Scholar
  19. 19.
    Bustelo XR, Ojeda V, Barreira M, Sauzeau V, Castro-Castro A. Rac-ing to the plasma membrane: the long and complex work commute of Rac1 during cell signaling. Small GTPases. 2012;3(1):60–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han SI, Oh SY, Woo SH, Kim KH, Kim JH, Kim HD, et al. Implication of a small GTPase Rac1 in the activation of c-Jun N-terminal kinase and heat shock factor in response to heat shock. J Biol Chem. 2001;276(3):1889–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Aranda JF, Reglero-Real N, Kremer L, Marcos-Ramiro B, Ruiz-Saenz A, Calvo M, et al. MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol Biol Cell. 2011;22(8):1252–62.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Joy AM, Beaudry CE, Tran NL, Ponce FA, Holz DR, Demuth T, et al. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci. 2003;116(Pt 21):4409–17.CrossRefPubMedGoogle Scholar
  23. 23.
    Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chew AL, Tan WY, Khoo BY. Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: a research perspective. Biomed Rep. 2013;1(2):185–92.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kallergi G, Agelaki S, Markomanolaki H, Georgoulias V, Stournaras C. Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol Biochem. 2007;20(6):977–86.CrossRefPubMedGoogle Scholar
  26. 26.
    Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008;8(11):835–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol. 2009;10(12):843–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Gould GW, Lippincott-Schwartz J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol. 2009;10(4):287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol. 2005;19(4):939–49.CrossRefPubMedGoogle Scholar
  30. 30.
    Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene. 2007;26(32):4668–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Simone LC, Caplan S, Naslavsky N. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization. PLoS ONE. 2013;8(9):e74519.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chang F, Lemmon CA, Park D, Romer LH. FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell. 2007;18(1):253–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Huasong G, Zongmei D, Jianfeng H, Xiaojun Q, Jun G, Sun G et al. Serine protease inhibitor (SERPIN) B1 suppresses cell migration and invasion in glioma cells. Brain Res. 2014. doi: 10.1016/j.brainres.2014.06.017.

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiaojing Yang
    • 1
  • Hanru Ren
    • 2
  • Li Yao
    • 3
  • Xueyu Chen
    • 4
  • Aina He
    • 1
  1. 1.Department of OncologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  2. 2.Department of General Surgery, Shanghai East HospitalTongji University School of MedicineShanghaiPeople’s Republic of China
  3. 3.Department of Immunology, Medical CollegeJiangnan UniversityWuxiPeople’s Republic of China
  4. 4.Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations