Tumor Biology

, Volume 36, Issue 5, pp 3679–3684 | Cite as

IL-6 polymorphism in non-small cell lung cancer: a prognostic value?

  • Mónica Gomes
  • Ana Coelho
  • António Araújo
  • Andreia Azevedo
  • Ana Luísa Teixeira
  • Raquel Catarino
  • Rui Medeiros
Research Article


Lung cancer was found to be the most commonly diagnosed cancer, as well as the primary cause of cancer-related mortality for males worldwide and the second leading cause of cancer-related deaths for women. Cytokines are fundamental for several biological processes-associated malignant tumors. The IL-6 is a cytokine involved in the regulation of cellular functions including processes associated with cancer, such as proliferation, apoptosis, angiogenesis, and differentiation. Furthermore, IL-6 is a potent pleiotropic inflammatory cytokine that is considered a key growth-promoting and antiapoptotic factor. The polymorphism − 174G/C SNP is a G to C transition in the -174 position of the promoter region of the IL-6 gene. The aim of our study was to evaluate the influence of -174G/C polymorphism in clinical outcome of non-small cell cancer (NSCLC) patients. DNA was extracted from peripheral blood of 424 patients diagnosed with cytologically or histologically NSCLC. The characterization of IL-6 -174G/C genotypes was performed by PCR-RFLP (NlaIII). IL-6 polymorphism’s genotypes were divided according to functional activity, so the G carriers (CG/GG) is the high-producer IL-6, and CC genotype is the low-producer IL-6. Regarding survival, we verify that patients with genotypes carrying the G allele (CG/GG) had a statistically significant diminished survival when compared with patients with CC genotype (62.79 and 42.31 months, respectively; P = 0.032). In the promoter region of the IL-6 gene, polymorphic variants were located and may be responsible for alterations in transcription that consequently affect serum levels of the cytokine. With our study, we demonstrated that genetic variant (-174G/G and G/C) can be responsible for changes in prognosis of NSCLC patients.


Interleukin-6 Polymorphism Non-small cell lung cancer Survival 



We thank the Liga Portuguesa Contra o Cancro-Centro Regional do Norte (Portuguese League Against Cancer) for their support.

Conflicts of interest



  1. 1.
    Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Molina JR et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Araujo A et al. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer—a review of the literature. Oncologist. 2007;12(2):201–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15(2):425–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Brandao GD, Brega EF, Spatz A. The role of molecular pathology in non-small-cell lung carcinoma-now and in the future. Curr Oncol. 2012;19 Suppl 1:S24–32.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Crohns M et al. Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy—association of interleukin-8 and VEGF with survival. Cytokine. 2010;50(1):30–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Ara T, Declerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer. 2010;46(7):1223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res. 2002;4 Suppl 3:S233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lukaszewicz M, Mroczko B, Szmitkowski M. Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease. Pol Arch Med Wewn. 2007;117(5-6):247–51.PubMedGoogle Scholar
  13. 13.
    Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol. 2001;159(6):2159–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Culig Z et al. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem. 2005;95(3):497–505.CrossRefPubMedGoogle Scholar
  15. 15.
    Giannitrapani L et al. Genetic association of interleukin-6 polymorphism (-174G/C) with chronic liver diseases and hepatocellular carcinoma. World J Gastroenterol. 2013;19(16):2449–55.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hefler LA et al. An interleukin-6 gene promoter polymorphism influences the biological phenotype of ovarian cancer. Cancer Res. 2003;63(12):3066–8.PubMedGoogle Scholar
  17. 17.
    Zhang X et al. IL-6 regulates MMP-10 expression via JAK2/STAT3 signaling pathway in a human lung adenocarcinoma cell line. Anticancer Res. 2009;29(11):4497–501.PubMedGoogle Scholar
  18. 18.
    Zarogoulidis P et al. Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunol Res. 2013;9(62):16535.Google Scholar
  19. 19.
    Liu RY et al. Association between IL6–174G/C and cancer: a meta-analysis of 105,482 individuals. Exp Ther Med. 2012;3(4):655–64.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4–5):357–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Pine SR et al. Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst. 2011;103(14):1112–22.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Azevedo A et al. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol. 2011;2(12):384–96.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    De Vita F et al. Serum concentrations of proinflammatory cytokines in advanced non small cell lung cancer patients. J Exp Clin Cancer Res. 1998;17(4):413–7.PubMedGoogle Scholar
  24. 24.
    Olomolaiye O, Wood NA, Bidwell JL. A novel NlaIII polymorphism in the human IL-6 promoter. Eur J Immunogenet. 1998;25(2–3):267.CrossRefPubMedGoogle Scholar
  25. 25.
    Fishman D et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Investig. 1998;102(7):1369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mandal S, Abebe F, Chaudhary J. 174G/C polymorphism in the interleukin-6 promoter is differently associated with prostate cancer incidence depending on race. Genet Mol Res. 2014;13(1):139–51.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cox ED et al. Cytokine polymorphic analyses indicate ethnic differences in the allelic distribution of interleukin-2 and interleukin-6. Transplantation. 2001;72(4):720–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Meenagh A et al. Frequency of cytokine polymorphisms in populations from Western Europe, Africa, Asia, the Middle East and South America. Hum Immunol. 2002;63(11):1055–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Oken MM et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Husten CG. How should we define light or intermittent smoking? Does it matter? Nicotine Tob Res. 2009;11(2):111–21.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kristiansen OP et al. Association of a functional 17beta-estradiol sensitive IL6-174G/C promoter polymorphism with early-onset type 1 diabetes in females. Hum Mol Genet. 2003;12(10):1101–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang M, Li C, Li M. Association of interleukin-6 (-174G/C) polymorphism with the prostate cancer risk: a meta-analysis. Biomed Rep. 2014;2(5):637–43.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhou B et al. C-reactive protein, interleukin 6 and lung cancer risk: a meta-analysis. PLoS ONE. 2012;7(8):e43075.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wojcik E et al. IL-6 and VEGF in small cell lung cancer patients. Anticancer Res. 2010;30(5):1773–8.PubMedGoogle Scholar
  36. 36.
    Ara T et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 2009;69(1):329–37.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ogata A et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol. 1997;159(5):2212–21.PubMedGoogle Scholar
  38. 38.
    Smith PC et al. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 2001;12(1):33–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Bollrath J et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102.CrossRefPubMedGoogle Scholar
  40. 40.
    Niu G et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene. 2002;21(46):7001–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Quintanilla-Martinez L et al. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol. 2003;162(5):1449–61.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gao SP et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest. 2007;117(12):3846–56.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim MY et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315–26.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Song XY et al. Research on the relationship between serum levels of inflammatory cytokines and non-small cell lung cancer. Asian Pac J Cancer Prev. 2013;14(8):4765–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Markkula A et al. IL6 genotype, tumour ER-status, and treatment predicted disease-free survival in a prospective breast cancer cohort. BMC Cancer. 2014;14:759.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tan D et al. Interleukin-6 polymorphism is associated with more aggressive prostate cancer. J Urol. 2005;174(2):753–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Talar-Wojnarowska R et al. Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci. 2009;54(3):683–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Garg R et al. Common polymorphism in interleukin 6 influences survival of women with ovarian and peritoneal carcinoma. Gynecol Oncol. 2006;103(3):793–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang YS et al. Serum cytokine levels in patients with advanced non-small cell lung cancer: correlation with clinical outcome of erlotinib treatment. Chin Med J (Engl). 2013;126(20):3931–5.Google Scholar
  50. 50.
    Enewold L et al. Serum concentrations of cytokines and lung cancer survival in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 2009;18(1):215–22.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chang CH et al. Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer. 2013;132(9):1977–85.CrossRefPubMedGoogle Scholar
  52. 52.
    DeMichele A et al. Interleukin-6–174G– > C polymorphism is associated with improved outcome in high-risk breast cancer. Cancer Res. 2003;63(22):8051–6.PubMedGoogle Scholar
  53. 53.
    Patel SA et al. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer. 2014;111(12):2287–96.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Mónica Gomes
    • 1
    • 2
    • 5
  • Ana Coelho
    • 1
    • 4
    • 5
  • António Araújo
    • 2
    • 3
  • Andreia Azevedo
    • 6
  • Ana Luísa Teixeira
    • 1
    • 2
  • Raquel Catarino
    • 1
    • 4
  • Rui Medeiros
    • 1
    • 2
    • 5
  1. 1.Molecular Oncology Group-CIPortuguese Institute of OncologyPortoPortugal
  2. 2.ICBAS, Abel Salazar Institute for the Biomedical SciencesUniversity of PortoPortoPortugal
  3. 3.Medical Oncology Service of Centro Hospitalar do PortoPortoPortugal
  4. 4.Faculty of Medicine of University of PortoPortoPortugal
  5. 5.LPCC, Research Department-Portuguese League Against Cancer (NRNorte)PortoPortugal
  6. 6.Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations