Advertisement

Tumor Biology

, Volume 36, Issue 5, pp 3601–3610 | Cite as

Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) prognostic value in lung adenocarcinoma

  • José Manuel Ruiz-Morales
  • Rita Dorantes-Heredia
  • Oscar Arrieta
  • Norberto C. Chávez-Tapia
  • Daniel Motola-Kuba
Research Article

Abstract

Prognosis in patients with lung cancer is poor. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) are proteins involved in the invasion and metastases of cancer. The objective of this study is to determine if there is a relationship between tumor expression of NGAL and MMP-9 in lung adenocarcinoma patients with prognosis and overall survival. Retrospective analysis was made of patients with lung adenocarcinoma treated at Medica Sur Hospital between 2005 and 2013. Tumor tissue was analyzed for NGAL and MMP-9 expression by immunohistochemistry. We identified 41 patients. Mean overexpression in tumoral tissue of NGAL was 70 % and 30 % for MMP-9. Univariate analysis revealed that prognostic factors associated with overall survival (OS) were NGAL expression and stage at diagnosis. Median OS for NGAL expression <70 % was 45.7 months (95 % CI; 15.2–76.2) and for patients with ≥70 % 4.6 months (95 % CI; 0.5–18.8; P < 0.0001), and for stage at diagnosis (stages I and II mean not reached), stage III mean OS 15.57 months (95 % CI; 9.8–21.2) and stage IV 9.6 months (95 % CI; 0.8–18.4. P = 0.002). No differences in OS were found for expression of MMP-9. Multivariate analysis revealed significance for OS in NGAL expression (HR 5.01 [95 % CI; 1.68–14.93] P = 0.004) and stage at diagnosis (HR 2.05 [95 % CI 1.30–3.22] P = 0.002). Tumoral tissue expression of NGAL ≥70 % confers a worse prognosis compared to those who did not. NGAL is an independent prognostic factor of stage at diagnosis.

Keywords

Lipocalin Lepidic Adenocarcinoma Matrix metalloproteinase 

Abbreviations

NGAL

Neutrophil gelatinase-associated lipocalin

MMP-9

Matrix metalloproteinase–9

Notes

Conflicts of interest

None

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional committee. For this type of study, formal consent is not required.

References

  1. 1.
    GLOBOCAN. International Agency for Research on Cancer. Cancer incidence and mortality worldwide in 2012. Globocan cancer fact sheets: lung cancer 2014. http://globocan.iarc.fr/. Accessed 17 June 2012.
  2. 2.
    Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2007;2(8):706–14. doi: 10.1097/JTO.0b013e31812f3c1a.Google Scholar
  3. 3.
    National Comprehensive Cancer Network. Occult primary (version 1.2015). 2014. http://www.nccn.org/professionals/physician_gls/pdf/occult.pdf. Accessed 28 Oct 2014.
  4. 4.
    Nesbitt JC, Putnam Jr JB, Walsh GL, Roth JA, Mountain CF. Survival in early-stage non-small cell lung cancer. Ann Thorac Surg. 1995;60(2):466–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Wenners AS, Mehta K, Loibl S, Park H, Mueller B, Arnold N, et al. Neutrophil gelatinase-associated lipocalin (NGAL) predicts response to neoadjuvant chemotherapy and clinical outcome in primary human breast cancer. PLoS One. 2012;7(10):e45826. doi: 10.1371/journal.pone.0045826.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaur S, Chakraborty S, Baine MJ, Mallya K, Smith LM, Sasson A, et al. Potentials of plasma NGAL and MIC-1 as biomarker(s) in the diagnosis of lethal pancreatic cancer. PLoS One. 2013;8(2):e55171. doi: 10.1371/journal.pone.0055171.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barresi V, Reggiani-Bonetti L, Di Gregorio C, Vitarelli E, Ponz De Leon M, Barresi G. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) prognostic value in stage I colorectal carcinoma. Pathol Res Pract. 2011;207(8):479–86. doi: 10.1016/j.prp.2011.05.012.CrossRefPubMedGoogle Scholar
  8. 8.
    Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta. 2012;1826(1):129–69. doi: 10.1016/j.bbcan.2012.03.008.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fernandez CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(15):5390–5. doi: 10.1158/1078-0432.CCR-04-2391.CrossRefGoogle Scholar
  10. 10.
    Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers—a different disease. Nat Rev Cancer. 2007;7(10):778–90. doi: 10.1038/nrc2190.CrossRefPubMedGoogle Scholar
  11. 11.
    Villalba Caloca J, Martínez Heredero R. Frecuencia del carcinoma broncopulmonar en pacientes fumadores y no fumadores diagnosticados en el Instituto Nacional de Enfermedades Respiratorias en el año 2001. Rev Inst Nac Enferm Respiratorias. 2004;17:27–34.Google Scholar
  12. 12.
    Martini N, Bains MS, Burt ME, Zakowski MF, McCormack P, Rusch VW, et al. Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg. 1995;109(1):120–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Postoperative T1 N0 non-small cell lung cancer. Squamous versus nonsquamous recurrences. The Lung Cancer Study Group. J Thorac Cardiovasc Surg. 1987;94(3):349–54.Google Scholar
  14. 14.
    Harpole Jr DH, Herndon 2nd JE, Young Jr WG, Wolfe WG, Sabiston Jr DC. Stage I nonsmall cell lung cancer. A multivariate analysis of treatment methods and patterns of recurrence. Cancer. 1995;76(5):787–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Lipford 3rd EH, Eggleston JC, Lillemoe KD, Sears DL, Moore GW, Baker RR. Prognostic factors in surgically resected limited-stage, nonsmall cell carcinoma of the lung. Am J Surg Pathol. 1984;8(5):357–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Ruffini E, Asioli S, Filosso PL, Buffoni L, Bruna MC, Mossetti C, et al. Significance of the presence of microscopic vascular invasion after complete resection of Stage I-II pT1-T2N0 non-small cell lung cancer and its relation with T-size categories: did the 2009 7th edition of the TNM staging system miss something? J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2011;6(2):319–26. doi: 10.1097/JTO.0b013e3182011f70.Google Scholar
  17. 17.
    Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):17–23. doi: 10.1006/geno.1997.4896.CrossRefPubMedGoogle Scholar
  18. 18.
    Bratt T. Lipocalins and cancer. Biochim Biophys Acta. 2000;1482(1–2):318–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318(Pt 1):1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goetz DH, Willie ST, Armen RS, Bratt T, Borregaard N, Strong RK. Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry. 2000;39(8):1935–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao H, Konishi A, Fujita Y, Yagi M, Ohata K, Aoshi T, et al. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism. Cell Host Microbe. 2012;12(5):705–16. doi: 10.1016/j.chom.2012.10.010.CrossRefPubMedGoogle Scholar
  22. 22.
    Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108(3):389–97. doi: 10.1007/s10549-007-9619-3.CrossRefPubMedGoogle Scholar
  23. 23.
    Shinriki S, Jono H, Ueda M, Obayashi K, Nakamura T, Ota K, et al. Stromal expression of neutrophil gelatinase-associated lipocalin correlates with poor differentiation and adverse prognosis in oral squamous cell carcinoma. Histopathology. 2014;64(3):356–64. doi: 10.1111/his.12293.CrossRefPubMedGoogle Scholar
  24. 24.
    Candido S, Maestro R, Polesel J, Catania A, Maira F, Signorelli SS, et al. Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. Oncotarget. 2014;5(6):1576–94.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169(4):681–91. doi: 10.1083/jcb.200409115.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bolignano D, Donato V, Lacquaniti A, Fazio MR, Bono C, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 2010;288(1):10–6. doi: 10.1016/j.canlet.2009.05.027.CrossRefPubMedGoogle Scholar
  27. 27.
    Krysan K, Cui X, Gardner BK, Reckamp KL, Wang X, Hong L, et al. Elevated neutrophil gelatinase-associated lipocalin contributes to erlotinib resistance in non-small cell lung cancer. Am J Transl Res. 2013;5(5):481–96.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390. doi: 10.1186/1471-2407-9-390.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dic A. Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in sera and urine of patients with kidney tumors. Oncol Lett. 2013;5(5):1677–81. doi: 10.3892/ol.2013.1252.Google Scholar
  30. 30.
    Tong Z, Kunnumakkara AB, Wang H, Matsuo Y, Diagaradjane P, Harikumar KB, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68(15):6100–8. doi: 10.1158/0008-5472.can-08-0540.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001;276(40):37258–65. doi: 10.1074/jbc.M106089200.CrossRefPubMedGoogle Scholar
  32. 32.
    Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 2009;100(1):9–16. doi: 10.1111/j.1349-7006.2008.01001.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Cao L, Yang H, Hu C. The expression and its clinical significance of MMP-2 and MMP-9 in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi = Chin J Lung Cancer. 2003;6(6):484–7. doi: 10.3779/j.issn. 1009-3419.2003.06.18.Google Scholar
  34. 34.
    Iniesta P, Moran A, De Juan C, Gomez A, Hernando F, Garcia-Aranda C, et al. Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep. 2007;17(1):217–23.PubMedGoogle Scholar
  35. 35.
    Liu Z, Xu S, Xiao N, Song C, Zhang H, Li F. Overexpression of IL-8 and MMP-9 confer high malignant phenotype in patients with non-small cell lung cancer. Zhongguo Fei Ai Za Zhi = Chin J Lung Cancer. 2010;13(8):795–802. doi: 10.3779/j.issn. 1009-3419.2010.08.09.Google Scholar
  36. 36.
    Ramanujum R, Lin YL, Liu JK, He S. Regulatory expression of MMP-8/MMP-9 and inhibition of proliferation, migration and invasion in human lung cancer A549 cells in the presence of HGF variants. Kaohsiung J Med Sci. 2013;29(10):530–9. doi: 10.1016/j.kjms.2013.01.011.CrossRefPubMedGoogle Scholar
  37. 37.
    Rollin J, Regina S, Vourc'h P, Iochmann S, Blechet C, Reverdiau P, et al. Influence of MMP-2 and MMP-9 promoter polymorphisms on gene expression and clinical outcome of non-small cell lung cancer. Lung Cancer. 2007;56(2):273–80. doi: 10.1016/j.lungcan.2006.11.021.CrossRefPubMedGoogle Scholar
  38. 38.
    Roomi MW, Monterrey JC, Kalinovsky T, Niedzwiecki A, Rath M. Modulation of MMP-2 and MMP-9 by cytokines, mitogens and inhibitors in lung cancer and malignant mesothelioma cell lines. Oncol Rep. 2009;22(6):1283–91.PubMedGoogle Scholar
  39. 39.
    Schveigert D, Cicenas S, Bruzas S, Samalavicius NE, Gudleviciene Z, Didziapetriene J. The value of MMP-9 for breast and non-small cell lung cancer patients’ survival. Adv Med Sci. 2013;58(1):73–82. doi: 10.2478/v10039-012-0066-y.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang JL, Wu DW, Cheng ZZ, Han WZ, Xu SW, Sun NN. Expression of High Mobility Group Box - B1 (HMGB-1) and Matrix Metalloproteinase-9 (MMP-9) in Non-small Cell Lung Cancer (NSCLC). Asian Pac J Cancer Prev APJCP. 2014;15(12):4865–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Zheng S, Chang Y, Hodges KB, Sun Y, Ma X, Xue Y, et al. Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Res. 2010;30(3):713–8.PubMedGoogle Scholar
  42. 42.
    O'Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance—NO and MMP-9 interactions. Biochim Biophys Acta. 2014;1843(3):603–17. doi: 10.1016/j.bbamcr.2013.12.006.CrossRefPubMedGoogle Scholar
  43. 43.
    Chang CK, Hung WC, Chang HC. The Kazal motifs of RECK protein inhibit MMP-9 secretion and activity and reduce metastasis of lung cancer cells in vitro and in vivo. J Cell Mol Med. 2008;12(6B):2781–9. doi: 10.1111/j.1582-4934.2008.00215.x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zheng R, Qin X, Li W, Kang J. Effect of Src tyrosine kinase inhibition on secretion of MMP-2 and MMP-9 by non-small cell lung cancer cells. Zhongguo Fei Ai Za Zhi = Chin J Lung Cancer. 2011;14(1):13–7. doi: 10.3779/j.issn. 1009-3419.2011.01.03.Google Scholar
  45. 45.
    Lee JH, Lin YL, Hsu WH, Chen HY, Chang YC, Yu CJ, et al. Bcl-2-like protein 11 deletion polymorphism predicts survival in advanced non-small-cell lung cancer. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2014;9(9):1385–92. doi: 10.1097/jto.0000000000000238.Google Scholar
  46. 46.
    Zhang XF, Zhang Y, Zhang XH, Zhou SM, Yang GG, Wang OC, et al. Clinical significance of Neutrophil gelatinase-associated lipocalin(NGAL) expression in primary rectal cancer. BMC Cancer. 2009;9:134. doi: 10.1186/1471-2407-9-134.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R, Shmulevich I, et al. NGAL decreases E-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Investig J Tech Methods Pathol. 2009;89(5):531–48. doi: 10.1038/labinvest.2009.17.CrossRefGoogle Scholar
  48. 48.
    Buss JL, Greene BT, Turner J, Torti FM, Torti SV. Iron chelators in cancer chemotherapy. Curr Top Med Chem. 2004;4(15):1623–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Jones DT, Trowbridge IS, Harris AL. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res. 2006;66(5):2749–56. doi: 10.1158/0008-5472.can-05-3857.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • José Manuel Ruiz-Morales
    • 1
  • Rita Dorantes-Heredia
    • 2
  • Oscar Arrieta
    • 3
  • Norberto C. Chávez-Tapia
    • 3
  • Daniel Motola-Kuba
    • 1
    • 4
  1. 1.Oncology CenterMedica Sur HospitalMexico CityMexico
  2. 2.Anatomical Pathology DepartmentMedica Sur HospitalMexico CityMexico
  3. 3.Lung Cancer UnitNational Cancer InstituteMexico CityMexico
  4. 4.Gastroenterology ClinicMedica Sur HospitalMexico CityMexico

Personalised recommendations