Tumor Biology

, Volume 36, Issue 5, pp 3549–3556 | Cite as

N-cadherin mediates the migration of MCF-10A cells undergoing bone morphogenetic protein 4-mediated epithelial mesenchymal transition

  • Ki-Sook Park
  • Maria Jose Dubon
  • Barry M. Gumbiner
Research Article


Epithelial–mesenchymal transition (EMT) of mammary epithelial cells is important in both normal morphogenesis of mammary glands and metastasis of breast cancer. Cadherin switching from E-cadherin to N-cadherin plays important roles in EMT. We found that cadherin switching is important in bone morphogenetic protein 4 (BMP4)-induced EMT in MCF-10A cells. BMP4 increased the phosphorylation of SMAD proteins in MCF-10A cells. Canonical BMP4 signaling decreased the expression of E-cadherin and disrupted the polarity of the tight junction protein ZO-1 in MCF-10A cells. However, the expression of N-cadherin and SNAI2 was up-regulated in BMP4-treated MCF-10A cells. MCF-10A cells that expressed N-cadherin migrated into type I collagen gels in response to BMP4 when evaluated using three-dimensional culture assays. Thus, active canonical BMP4 signaling is important for the migration and EMT of mammary epithelial cells. Moreover, the decrease in E-cadherin and/or increase in N-cadherin may be required for BMP4-induced migration and EMT.


Epithelial mesenchymal transition Bone morphogenetic protein 4 N-cadherin Mammary epithelial cell MCF-10A 



This work was financially supported by the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI13C1479 to Ki-Sook Park), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2012R1A1A2042265 to Ki-Sook Park), a grant from Kyung Hee University in 2014 (KHU-20140698 to Ki-Sook Park), and National Institutes of Health grant R01 (GM-28140 to Barry Gumbiner).

Conflicts of interest



  1. 1.
    Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215–30.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.CrossRefPubMedGoogle Scholar
  4. 4.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307(5715):1603–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.CrossRefPubMedGoogle Scholar
  6. 6.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Park KS, Gumbiner BM. Cadherin 6B induces BMP signaling and de-epithelialization during the epithelial mesenchymal transition of the neural crest. Development. 2010;137(16):2691–701.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schafer G, Narasimha M, Vogelsang E, Leptin M. Cadherin switching during the formation and differentiation of the Drosophila mesoderm: implications for epithelial mesenchymal transitions. J Cell Sci. 2014;127(Pt 7):1511–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Maeda M, Johnson KR, Wheelock MJ. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci. 2005;118(Pt 5):873–87.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu JP, Jessell TM. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development. 1998;125(24):5055–67.PubMedGoogle Scholar
  12. 12.
    Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102(39):13909–14.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, Maas R, et al. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development. 1996;122(9):2729–37.PubMedGoogle Scholar
  14. 14.
    Pal A, Huang W, Li X, Toy KA, Nikolovska-Coleska Z, Kleer CG. CCN6 modulates BMP signaling via the Smad-independent TAK1/p38 pathway, acting to suppress metastasis of breast cancer. Cancer Res. 2012;72(18):4818–28.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Andrews JL, Kim AC, Hens JR. The role and function of cadherins in the mammary gland. Breast Cancer Res. 2012;14(1):203.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takahashi M, Otsuka F, Miyoshi T, Otani H, Goto J, Yamashita M, et al. Bone morphogenetic protein 6 (BMP6) and BMP7 inhibit estrogen-induced proliferation of breast cancer cells by suppressing p38 mitogen-activated protein kinase activation. J Endocrinol. 2008;199(3):445–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008;27(49):6322–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gatza CE, Elderbroom JL, Oh SY, Starr MD, Nixon AB, Blobe GC. The balance of cell surface and soluble type III TGF-beta receptor regulates BMP signaling in normal and cancerous mammary epithelial cells. Neoplasia. 2014;16(6):489–500.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Montesano R. Bone morphogenetic protein-4 abrogates lumen formation by mammary epithelial cells and promotes invasive growth. Biochem Biophys Res Commun. 2007;353(3):817–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Ampuja M, Jokimaki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL, Kallioniemi A. BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer. 2013;13:429.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sela-Donenfeld D, Kalcheim C. Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development. 1999;126(21):4749–62.PubMedGoogle Scholar
  24. 24.
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.CrossRefPubMedGoogle Scholar
  25. 25.
    Alexander NR, Tran NL, Rekapally H, Summers CE, Glackin C, Heimark RL. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res. 2006;66(7):3365–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Palma-Nicolas JP, Lopez-Colome AM. Thrombin induces slug-mediated E-cadherin transcriptional repression and the parallel up-regulation of N-cadherin by a transcription-independent mechanism in RPE cells. J Cell Physiol. 2013;228(3):581–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suyama K, Shapiro I, Guttman M, Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell. 2002;2(4):301–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Shoval I, Ludwig A, Kalcheim C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development. 2007;134(3):491–501.CrossRefPubMedGoogle Scholar
  30. 30.
    Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003;116(Pt 10):1959–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol. 1999;147(3):631–44.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hulit J, Suyama K, Chung S, Keren R, Agiostratidou G, Shan W, et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 2007;67(7):3106–16.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ki-Sook Park
    • 1
  • Maria Jose Dubon
    • 2
  • Barry M. Gumbiner
    • 3
  1. 1.East-West Medical Research Institute/College of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Graduate School of BiotechnologyKyung Hee UniversityYong-InKorea
  3. 3.Department of Cell BiologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations