Tumor Biology

, Volume 36, Issue 5, pp 3521–3531 | Cite as

HOXA5 indicates poor prognosis and suppresses cell proliferation by regulating p21 expression in non small cell lung cancer

  • Mei-ling Zhang
  • Feng-qi Nie
  • Ming Sun
  • Rui Xia
  • Min Xie
  • Kai-hua Lu
  • Wei Li
Research Article


Homeobox genes, a superfamily of evolutionarily conserved developmental genes, function as critical master regulatory factors in controlling body plan specification and cell fate determination. Recently, a substantial body of evidence indicates that the aberrant Homeobox (HOX) genes also play key roles in the development of cancers. Many reports have shown not only that HOX gene expression is upregulated or downregulated in many cancers but also that the expression of specific HOX genes tends to differ based on tissue type. Homeobox A5 (HOXA5) is a master regulator of the morphogenesis and cell differentiation, and its expression is also downregulated in many cancers mediated by DNA methylation. However, its biological role and clinical significance in nonsmall cell lung cancer (NSCLC) development and progression are not well documented. In this study, we found that expression levels of HOXA5 were significantly decreased in NSCLC tissues compared with adjacent normal tissues. Its expression level was significantly correlated with tumor–node–metastasis (TNM) stages, tumor size, and lymph node metastasis. Moreover, patients with lower levels of HOXA5 expression had a relatively poor prognosis. Furthermore, ectopic overexpression of HOXA5 could inhibit cell proliferation and invasion, while knockdown HOXA5 by siRNA promoted cell proliferation in NSCLC cells partly via regulating p21 expression. Our findings present that decreased HOXA5 could be identified as a poor prognostic biomarker in NSCLC and regulate cell proliferation and invasion.


NSCLC Homeobox genes HOXA5 Proliferation p21 



This work was supported by the National Natural Scientific Foundation of China (No. 81372397 to Kai-hua Lu, No. 81302012 to Wei Li) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (JX10231801).

Conflicts of interest


Supplementary material

13277_2014_2988_MOESM1_ESM.xls (10 kb)
Supplementary Table 1 (XLS 10 kb)


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166.CrossRefPubMedGoogle Scholar
  2. 2.
    Verdecchia A, Francisci S, Brenner H, Gatta G, Micheli A, Mangone L, et al. Recent cancer survival in Europe: a 2000-02 period analysis of EUROCARE-4 data. Lancet Oncol. 2007;8(9):784–96. doi: 10.1016/S1470-2045(07)70246-2.CrossRefPubMedGoogle Scholar
  3. 3.
    Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002;2(10):777–85. doi: 10.1038/nrc907.CrossRefPubMedGoogle Scholar
  4. 4.
    Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl). 2014;92(8):811–23. doi: 10.1007/s00109-014-1181-y.CrossRefGoogle Scholar
  5. 5.
    McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68(2):283–302.CrossRefPubMedGoogle Scholar
  6. 6.
    Garcia-Fernandez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6(12):881–92. doi: 10.1038/nrg1723.CrossRefPubMedGoogle Scholar
  7. 7.
    Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005;6(12):893–904. doi: 10.1038/nrg1726.CrossRefPubMedGoogle Scholar
  8. 8.
    Kelly ZL, Michael A, Butler-Manuel S, Pandha HS, Morgan RG. HOX genes in ovarian cancer. J Ovarian Res. 2011;4:16. doi: 10.1186/1757-2215-4-16.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eklund EA. The role of HOX genes in myeloid leukemogenesis. Curr Opin Hematol. 2006;13(2):67–73. doi: 10.1097/01.moh.0000208467.63861.d6.CrossRefPubMedGoogle Scholar
  10. 10.
    Calvo R, West J, Franklin W, Erickson P, Bemis L, Li E, et al. Altered HOX and WNT7A expression in human lung cancer. Proc Natl Acad Sci U S A. 2000;97(23):12776–81. doi: 10.1073/pnas.97.23.12776.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ramachandran S, Liu P, Young AN, Yin-Goen Q, Lim SD, Laycock N, et al. Loss of HOXC6 expression induces apoptosis in prostate cancer cells. Oncogene. 2005;24(1):188–98. doi: 10.1038/sj.onc.1207906.CrossRefPubMedGoogle Scholar
  12. 12.
    Liao WT, Jiang D, Yuan J, Cui YM, Shi XW, Chen CM, et al. HOXB7 as a prognostic factor and mediator of colorectal cancer progression. Clin Cancer Res. 2011;17(11):3569–78. doi: 10.1158/1078-0432.CCR-10-2533.CrossRefPubMedGoogle Scholar
  13. 13.
    Abe M, Hamada J, Takahashi O, Takahashi Y, Tada M, Miyamoto M, et al. Disordered expression of HOX genes in human non-small cell lung cancer. Oncol Rep. 2006;15(4):797–802.PubMedGoogle Scholar
  14. 14.
    Plowright L, Harrington KJ, Pandha HS, Morgan R. HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer. 2009;100(3):470–5. doi: 10.1038/sj.bjc.6604857.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mandeville I, Aubin J, LeBlanc M, Lalancette-Hebert M, Janelle MF, Tremblay GM, et al. Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol. 2006;169(4):1312–27. doi: 10.2353/ajpath.2006.051333.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Packer AI, Mailutha KG, Ambrozewicz LA, Wolgemuth DJ. Regulation of the Hoxa4 and Hoxa5 genes in the embryonic mouse lung by retinoic acid and TGFbeta1: implications for lung development and patterning. Dev Dyn. 2000;217(1):62–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 2000;405(6789):974–8. doi: 10.1038/35016125.CrossRefPubMedGoogle Scholar
  18. 18.
    Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard Jr P, Raman V. HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem. 2005;280(3):2294–9. doi: 10.1074/jbc.M411018200.CrossRefPubMedGoogle Scholar
  19. 19.
    Duriseti S, Winnard Jr PT, Mironchik Y, Vesuna F, Raman A, Raman V. HOXA5 regulates hMLH1 expression in breast cancer cells. Neoplasia. 2006;8(4):250–8. doi: 10.1593/neo.05766.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yoo KH, Park YK, Kim HS, Jung WW, Chang SG. Epigenetic inactivation of HOXA5 and MSH2 gene in clear cell renal cell carcinoma. Pathol Int. 2010;60(10):661–6. doi: 10.1111/j.1440-1827.2010.02578.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim DS, Kim MJ, Lee JY, Lee SM, Choi JY, Yoon GS, et al. Epigenetic inactivation of Homeobox A5 gene in nonsmall cell lung cancer and its relationship with clinicopathological features. Mol Carcinog. 2009;48(12):1109–15. doi: 10.1002/mc.20561.CrossRefPubMedGoogle Scholar
  22. 22.
    Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19(2):197–208. doi: 10.1530/ERC-11-0329.CrossRefPubMedGoogle Scholar
  23. 23.
    Storti P, Donofrio G, Colla S, Airoldi I, Bolzoni M, Agnelli L, et al. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia. 2011;25(3):527–37. doi: 10.1038/leu.2010.270.CrossRefPubMedGoogle Scholar
  24. 24.
    Chile T, Fortes MA, Correa-Giannella ML, Brentani HP, Maria DA, Puga RD, et al. HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis. BMC Cancer. 2013;13:451. doi: 10.1186/1471-2407-13-451.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim SY, Hwang SH, Song EJ, Shin HJ, Jung JS, Lee EY. Level of HOXA5 hypermethylation in acute myeloid leukemia is associated with short-term outcome. Korean J Lab Med. 2010;30(5):469–73. doi: 10.3343/kjlm.2010.30.5.469.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen H, Chung S, Sukumar S. HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol. 2004;24(2):924–35.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Hengst L, Gopfert U, Lashuel HA, Reed SI. Complete inhibition of Cdk/cyclin by one molecule of p21(Cip1). Genes Dev. 1998;12(24):3882–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of OncologyFirst Affiliated Hospital, Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations