Advertisement

Tumor Biology

, Volume 36, Issue 5, pp 3399–3406 | Cite as

Effect of Golgi phosphoprotein 2 (GOLPH2/GP73) on autophagy in human hepatocellular carcinoma HepG2 cells

  • Yuan-Yuan Zhou
  • Jun-Chang Jiang
  • Jun You
  • Lin-Fu Zhou
Research Article
  • 316 Downloads

Abstract

This study aims to investigate the effect of Golgi Protein 73 (GP73) on autophagy in human hepatoma line cells HepG2. We investigated the functional effects of GP73 on autophagy in hepatoma cell line HepG2 using immunofluoscence staining, Western blotting and real-time PCR. Our data showed that specific small interference RNA (siRNA) notably induced formation of autophagic vacuoles. In addition, upregulation of GP73 significantly inhibited formation of starvation-induced LC3-positive structures. We provide the first experimental evidence to show that GP73 may play an important role in the inhibitory regulation of autophagy. Therefore, our data suggest a new molecular mechanism for GP73-related hepatoma progression.

Keywords

GOLPH2/GP73 Hepatocellular carcinoma RNA interference Autophagy MAP1LC3 

Abbreviations

GP73

73-kd Golgi protein (Genbank # AF236056)

LC3

Microtubule-associated protein 1 light chain 3 (MAP1LC3)

SDS

Sodium dodecyl sulfate

PBS

Phosphate-buffered saline

DMEM

Dulbecco’s modified Eagle’s medium

EBSS

Earle’s balanced salt solution

FBS

Fetal bovine serum

DAPI

4,6-Diamidino-2-phenylindole

ANOVA

analysis of variance

ATG

autophagy-related gene

HCC

Hepatocellular carcinoma

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by the Project 2013C14011 from Department of Science and Technology of Zhejiang Province, and the Project of National Essential Drug Research and Development of China (2013ZX09506015).

Conflicts of interest

None

References

  1. 1.
    Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Botti J, Djavaheri-Mergny M, Pilatte Y, et al. Autophagy signaling and the cogwheels of cancer. Autophagy. 2006;2(2):67–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis. 2011;32(7):955–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ni HM, Williams JA, Yang H, et al. Targeting autophagy for the treatment of liver diseases. Pharmacol Res. 2012;66(6):463–74.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ding ZB, Shi YH, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res. 2008;68(22):9167–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–20.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25(8):795–800.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010;12(9):831–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Webber JL, Young AR, Tooze SA. Atg9 trafficking in mammalian cells. Autophagy. 2007;3(1):54–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci. 2009;66(17):2913–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Itoh T, Fujita N, Kanno E, et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell. 2008;19(7):2916–25.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yen WL, Shintani T, Nair U, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol. 2010;188(1):101–14.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kladney RD, Bulla GA, Guo L, et al. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene. 2000;249(1–2):53–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Mao Y, Yang H, Xu H, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59(12):1687–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Bachert C, Fimmel C, Linstedt AD. Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepatocellular carcinoma. Traffic. 2007;8(10):1415–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Marrero JA, Romano PR, Nikolaeva O, et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol. 2005;43(6):1007–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Kladney RD, Cui X, Bulla GA, et al. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology. 2002;35(6):1431–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Fimmel CJ, Wright L. Golgi protein 73 as a biomarker of hepatocellular cancer: development of a quantitative serum assay and expression studies in hepatic and extrahepatic malignancies. Hepatology. 2009;49(5):1421–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun Y, Yang H, Mao Y, et al. Increased Golgi protein 73 expression in hepatocellular carcinoma tissue correlates with tumor aggression but not survival. J Gastroenterol Hepatol. 2011;26(7):1207–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Donohue Jr TM. Autophagy and ethanol-induced liver injury. World J Gastroenterol. 2009;15(10):1178–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Guo Y, Chang C, Huang R, et al. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci. 2012;125(Pt 7):1706–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Puri S, Bachert C, Fimmel CJ, et al. Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic. 2002;3(9):641–53.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yuan-Yuan Zhou
    • 1
  • Jun-Chang Jiang
    • 1
  • Jun You
    • 2
  • Lin-Fu Zhou
    • 1
    • 3
  1. 1.Medical Biotechnology LaboratoryZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Cancer HospitalHangzhouChina
  3. 3.Faculty of Basic MedicineMedicine School of Zhejiang UniversityHangzhouChina

Personalised recommendations