Tumor Biology

, Volume 36, Issue 5, pp 3279–3284 | Cite as

A functional polymorphism in microRNA-196a2 is associated with increased susceptibility to non-Hodgkin lymphoma

  • Tao Li
  • Lijuan Niu
  • Lili Wu
  • Xia Gao
  • Man Li
  • Wenxuan Liu
  • Lei Yang
  • Dianwu Liu
Research Article


Aberrant expression and structural alterations of microRNAs (miRNAs) play important roles in tumorigenesis. The miRNA-196a2 polymorphism is associated with tumorigenesis, but its association with non-Hodgkin lymphoma (NHL) remains unexplored. We evaluated the association between the miRNA-196a2 T>C polymorphism (rs11614913) and NHL risk in a case–control study of 318 NHL cases and 320 healthy controls. We also examined miRNA-196a expression in tissue samples from NHL patients (n = 59). The TC and CC genotypes were associated with cancer risk in NHL [odds ratio (OR) = 1.384, confidence interval (CI) = 1.010–1.898 for TC vs. TT, and OR = 1.822, 95 % CI = 1.163–2.853 for CC vs. TT]. Analysis of the association between this polymorphism and the clinicopathology of NHL showed that the combined TC/CC genotypes were associated with Ann Arbor stage (OR = 1.852, 95 % CI = 1.139–3.010), bone marrow invasion (OR = 1.850, 95 % CI = 1.062–3.223), and B symptoms (OR = 1.852, 95 % CI = 1.154–2.972), but not with immunohistological subtype, lymph node size, age, or gender. In addition, the CC or CC/TC genotypes were associated with significantly higher levels of mature miR-196a (p = 0.002 or 0.008) in a genotype–phenotype correlation analysis. Our findings suggest that the miR-196a2 polymorphism may increase the risk of NHL by altering the expression of mature miR-196a.


Non-Hodgkin lymphoma microRNA miRNA-196a2 rs11614913 polymorphism Susceptibility 



This work was supported by the Key Project of Medical Science Research of Hebei Provincial Bureau of Health (no. 20110558).

Conflicts of interest



  1. 1.
    Ekström-Smedby K. Epidemiology and etiology of non-Hodgkin lymphoma-a review. Acta Oncol. 2006;45:258–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Cox B, Liu CW, Sneyd MJ, Cameron CM. Epidemic of non-Hodgkin lymphoma in New Zealand remains unexplained. J Cancer Epidemiol. 2014. doi: 10.1155/2014/315378.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu J, Song B, Fan TY, Huang CS, Xie C, Li J, et al. Pathological and clinical characteristics of 1,248 non-Hodgkin’s lymphomas from a regional cancer hospital in Shandong. China Asian Pac J Cancer Prev. 2011;12:3055–61.PubMedGoogle Scholar
  4. 4.
    Huang YW, Zhang MB, Xu X, Xu XH, Zhou Q, Jian L. Socioeconomic inequality in the use of rituximab therapy among non-Hodgkin lymphoma patients in Chinese public hospitals. Asia Pac J Public Health. 2014;26:203–14.CrossRefGoogle Scholar
  5. 5.
    Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012;380:848–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang B, Liu C, Diao LP, Wang CJ, Guo ZJ. A polymorphism at the microRNA binding site in the 3’untranslated region of C14orf101 is associated with non-Hodgkin lymphoma overall survival. Cancer Genet. 2014;207:141–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett. 2005;579:5911–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Jedlinski DJ, Gabrovska PN, Weinstein SR, Smith RA, Griffiths LR. Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: a case control study. Twin Res Hum Genet. 2011;14:417–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu LJ, Chu HY, Gu DY, Ma L, Shi DN, Zhong DY, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol. 2012;31:350–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Lv M, Dong W, Li L, Zhang L, Su X, Wang L, et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. J Cancer Res Clin Oncol. 2013;139:1405–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Akkız H, Bayram S, Bekar A, Akgöllü E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case–control study. J Viral Hepat. 2011;18:e399–407.CrossRefPubMedGoogle Scholar
  15. 15.
    Linhares JJ, Azevedo Jr M, Siufi AA, de Carvalho CV, WolgienMdel C, Noronha EC, et al. Evaluation of single nucleotide polymorphisms in microRNAs (hsa-miR-196a2 rs11614913 C/T) from Brazilian women with breast cancer. BMC Med Genet. 2012. doi: 10.1186/1471-2350-13-119.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. Lung Cancer. 2010;69:127–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci. 2010;55:2288–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J Hum Genet. 2010;55:495–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang K, Guo H, Hu H, Xiong G, Guan X, Li J, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. Biomarkers. 2010;15:614–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Tong N, Xu B, Shi D, Du M, Li X, Sheng X, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res. 2014;759:16–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Sabattini E, Bacci F, Sagramoso C, Pileri SA. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica. 2010;102:83–7.PubMedGoogle Scholar
  22. 22.
    Hu ZB, Chen JP, Tian T, Zhou XY, Gu HY, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep. 2014;41:1075–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF, Xie SY. The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One. 2013;8:e70656.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J. 2012;42:e115–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kang ZJ, Li YH, He XK, Jiu T, Wei JX, Tian FY, et al. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects. Tumor Biol. 2014;35:6271–82.CrossRefGoogle Scholar
  27. 27.
    Diao LP, Ma H, Wei GC, Li T, Liu HS, Liu LH, et al. Matrix metalloproteinase-2 promoter and tissue inhibitor of metalloproteinase-2 gene polymorphisms in non-Hodgkin’s lymphoma. Int J Cancer. 2012;131:1095–103.CrossRefPubMedGoogle Scholar
  28. 28.
    Yu ZF, Kim J, He L, Creighton CJ, Gunaratne PH, Hawkins SM, et al. Functional analysis of miR-34c as a putative tumor suppressor in high grade serous ovarian cancer. Biol Reprod. 2014. doi: 10.1095/biolreprod.114.121988.Google Scholar
  29. 29.
    Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. Pathology. 2010;42:669–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69:5970–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Tao Li
    • 1
  • Lijuan Niu
    • 2
  • Lili Wu
    • 3
  • Xia Gao
    • 1
  • Man Li
    • 1
  • Wenxuan Liu
    • 1
  • Lei Yang
    • 1
  • Dianwu Liu
    • 1
  1. 1.Department of Epidemiology and Health Statistics, School of Public HealthHebei Medical UniversityShijiazhuangChina
  2. 2.The Third Hospital of ShijiazhuangShijiazhuangChina
  3. 3.The Fourth Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations