Tumor Biology

, Volume 36, Issue 5, pp 3279–3284 | Cite as

A functional polymorphism in microRNA-196a2 is associated with increased susceptibility to non-Hodgkin lymphoma

  • Tao Li
  • Lijuan Niu
  • Lili Wu
  • Xia Gao
  • Man Li
  • Wenxuan Liu
  • Lei Yang
  • Dianwu Liu
Research Article

Abstract

Aberrant expression and structural alterations of microRNAs (miRNAs) play important roles in tumorigenesis. The miRNA-196a2 polymorphism is associated with tumorigenesis, but its association with non-Hodgkin lymphoma (NHL) remains unexplored. We evaluated the association between the miRNA-196a2 T>C polymorphism (rs11614913) and NHL risk in a case–control study of 318 NHL cases and 320 healthy controls. We also examined miRNA-196a expression in tissue samples from NHL patients (n = 59). The TC and CC genotypes were associated with cancer risk in NHL [odds ratio (OR) = 1.384, confidence interval (CI) = 1.010–1.898 for TC vs. TT, and OR = 1.822, 95 % CI = 1.163–2.853 for CC vs. TT]. Analysis of the association between this polymorphism and the clinicopathology of NHL showed that the combined TC/CC genotypes were associated with Ann Arbor stage (OR = 1.852, 95 % CI = 1.139–3.010), bone marrow invasion (OR = 1.850, 95 % CI = 1.062–3.223), and B symptoms (OR = 1.852, 95 % CI = 1.154–2.972), but not with immunohistological subtype, lymph node size, age, or gender. In addition, the CC or CC/TC genotypes were associated with significantly higher levels of mature miR-196a (p = 0.002 or 0.008) in a genotype–phenotype correlation analysis. Our findings suggest that the miR-196a2 polymorphism may increase the risk of NHL by altering the expression of mature miR-196a.

Keywords

Non-Hodgkin lymphoma microRNA miRNA-196a2 rs11614913 polymorphism Susceptibility 

Notes

Acknowledgments

This work was supported by the Key Project of Medical Science Research of Hebei Provincial Bureau of Health (no. 20110558).

Conflicts of interest

None

References

  1. 1.
    Ekström-Smedby K. Epidemiology and etiology of non-Hodgkin lymphoma-a review. Acta Oncol. 2006;45:258–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Cox B, Liu CW, Sneyd MJ, Cameron CM. Epidemic of non-Hodgkin lymphoma in New Zealand remains unexplained. J Cancer Epidemiol. 2014. doi: 10.1155/2014/315378.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu J, Song B, Fan TY, Huang CS, Xie C, Li J, et al. Pathological and clinical characteristics of 1,248 non-Hodgkin’s lymphomas from a regional cancer hospital in Shandong. China Asian Pac J Cancer Prev. 2011;12:3055–61.PubMedGoogle Scholar
  4. 4.
    Huang YW, Zhang MB, Xu X, Xu XH, Zhou Q, Jian L. Socioeconomic inequality in the use of rituximab therapy among non-Hodgkin lymphoma patients in Chinese public hospitals. Asia Pac J Public Health. 2014;26:203–14.CrossRefGoogle Scholar
  5. 5.
    Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012;380:848–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang B, Liu C, Diao LP, Wang CJ, Guo ZJ. A polymorphism at the microRNA binding site in the 3’untranslated region of C14orf101 is associated with non-Hodgkin lymphoma overall survival. Cancer Genet. 2014;207:141–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett. 2005;579:5911–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Jedlinski DJ, Gabrovska PN, Weinstein SR, Smith RA, Griffiths LR. Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: a case control study. Twin Res Hum Genet. 2011;14:417–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu LJ, Chu HY, Gu DY, Ma L, Shi DN, Zhong DY, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol. 2012;31:350–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Lv M, Dong W, Li L, Zhang L, Su X, Wang L, et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. J Cancer Res Clin Oncol. 2013;139:1405–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Akkız H, Bayram S, Bekar A, Akgöllü E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case–control study. J Viral Hepat. 2011;18:e399–407.CrossRefPubMedGoogle Scholar
  15. 15.
    Linhares JJ, Azevedo Jr M, Siufi AA, de Carvalho CV, WolgienMdel C, Noronha EC, et al. Evaluation of single nucleotide polymorphisms in microRNAs (hsa-miR-196a2 rs11614913 C/T) from Brazilian women with breast cancer. BMC Med Genet. 2012. doi: 10.1186/1471-2350-13-119.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. Lung Cancer. 2010;69:127–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci. 2010;55:2288–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J Hum Genet. 2010;55:495–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang K, Guo H, Hu H, Xiong G, Guan X, Li J, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. Biomarkers. 2010;15:614–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Tong N, Xu B, Shi D, Du M, Li X, Sheng X, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res. 2014;759:16–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Sabattini E, Bacci F, Sagramoso C, Pileri SA. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica. 2010;102:83–7.PubMedGoogle Scholar
  22. 22.
    Hu ZB, Chen JP, Tian T, Zhou XY, Gu HY, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep. 2014;41:1075–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF, Xie SY. The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One. 2013;8:e70656.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J. 2012;42:e115–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kang ZJ, Li YH, He XK, Jiu T, Wei JX, Tian FY, et al. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects. Tumor Biol. 2014;35:6271–82.CrossRefGoogle Scholar
  27. 27.
    Diao LP, Ma H, Wei GC, Li T, Liu HS, Liu LH, et al. Matrix metalloproteinase-2 promoter and tissue inhibitor of metalloproteinase-2 gene polymorphisms in non-Hodgkin’s lymphoma. Int J Cancer. 2012;131:1095–103.CrossRefPubMedGoogle Scholar
  28. 28.
    Yu ZF, Kim J, He L, Creighton CJ, Gunaratne PH, Hawkins SM, et al. Functional analysis of miR-34c as a putative tumor suppressor in high grade serous ovarian cancer. Biol Reprod. 2014. doi: 10.1095/biolreprod.114.121988.Google Scholar
  29. 29.
    Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. Pathology. 2010;42:669–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69:5970–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Tao Li
    • 1
  • Lijuan Niu
    • 2
  • Lili Wu
    • 3
  • Xia Gao
    • 1
  • Man Li
    • 1
  • Wenxuan Liu
    • 1
  • Lei Yang
    • 1
  • Dianwu Liu
    • 1
  1. 1.Department of Epidemiology and Health Statistics, School of Public HealthHebei Medical UniversityShijiazhuangChina
  2. 2.The Third Hospital of ShijiazhuangShijiazhuangChina
  3. 3.The Fourth Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations