Advertisement

Tumor Biology

, Volume 36, Issue 5, pp 3263–3277 | Cite as

Knockdown of the AKT3 (PKBγ), PI3KCA, and VEGFR2 genes by RNA interference suppresses glioblastoma multiforme T98G cells invasiveness in vitro

  • Monika Paul-Samojedny
  • Adam Pudełko
  • Renata Suchanek-Raif
  • Małgorzata Kowalczyk
  • Anna Fila-Daniłow
  • Paulina Borkowska
  • Jan Kowalski
Research Article

Abstract

Glioblastoma multiforme (GBM) is the most common primary brain malignancy, having a very poor prognosis and is characterized by extensive brain invasion as well as resistance to the therapy. The phosphoinositide 3-kinase (PI3K)/Akt/PTEN signaling pathway is deregulated in GBM. Besides, florid vascularization and aberrantly elevated vascular endothelial growth factor (VEGF) occur very often. The present study was designed to examine the inhibitory effect of AKT3, PI3KCA, and VEGFR2 small interfering RNAs (siRNAs) on GBM cell invasiveness. T98G cells were transfected with AKT3, PI3KCA, and/or VEGFR2 siRNAs. VEGFR2 protein-positive cells were identified by flow cytometry using specific monoclonal anti-VEGFR2 antibodies. Alterations in messenger RNA (mRNA) expression of VEGF, VEGFR2, matrix metalloproteinases (MMPs) (MMP-2, MMP-9, MMP-13, MMP-14), tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1, TIMP-3), c-Fos, c-Jun, hypoxia-inducible factor-1α (HIF-1α), ObRa, and cathepsin D genes were analyzed by qRT-PCR. Cells treated with specific siRNA were also analyzed for invasion using the Matrigel invasion assay. We have found significantly lower mRNA levels of MMPs, cathepsin D, VEGF, VEGFR2, HIF-1α, and c-Fos/c-Jun ratio, as well as significantly higher mRNA level of TIMPs in AKT3 and PI3KCA siRNA transfected cells compared to untransfected cells, while significantly lower mRNA levels of MMPs (MMP-2, MMP-9, MMP-14) and TIMP-1, as well as significantly higher mRNA level of TIMP-3, were shown only in cells transfected with VEGFR2 siRNA. The positive correlation between MMP-13 and ObRa mRNA copy number has been found. Summarizing, transfection of T98G cells with AKT3, PI3KCA, or VEGFR2 siRNAs leads to a significant reduction in cell invasiveness. The siRNA-induced AKT3, PI3KCA, and VEGFR2 mRNA knockdown may offer a novel therapeutic strategy to reduce the invasiveness of GBM cells.

Keywords

siRNA AKT3 PI3KCA VEGFR2 genes Metalloproteinases Cathepsin D Glioblastoma multiforme Invasiveness 

Notes

Funding

This work was supported by the grant from Medical University of Silesia. The University had no further role in study design, in the collection, analysis and interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.

Conflicts of interest

None

References

  1. 1.
    Weber GL, Parat M-O, Binder ZA, Gallia GL, Riggins GJ. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget. 2011;2:833–49.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Del Maestro R. Surgical resection and glioblastoma: molecular profiling and safety. Can J Neurol Sci. 2012;39:561–2.PubMedGoogle Scholar
  3. 3.
    Hafsi S, Pezzino FM, Candido S, Ligresti G, Spandidos DA, Soua Z, et al. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). Int J Oncol. 2012;40:639–44.PubMedGoogle Scholar
  4. 4.
    Burris HA. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013;71:829–42.PubMedGoogle Scholar
  5. 5.
    Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 2005;23:2411–22.PubMedGoogle Scholar
  6. 6.
    Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, et al. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol. 2010;12:221–32.PubMedGoogle Scholar
  7. 7.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.PubMedGoogle Scholar
  8. 8.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.PubMedGoogle Scholar
  9. 9.
    Hartmann C, Bartels G, Gehlhaar C, Holtkamp N, von Deimling A. PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol. 2005;109:639–42.PubMedGoogle Scholar
  10. 10.
    Zhou X-K, Tang S-S, Yi G, Hou M, Chen J-H, Yang B, et al. RNAi knockdown of PIK3CA preferentially inhibits invasion of mutant PIK3CA cells. World J Gastroenterol. 2011;17:3700–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jiang B-H, Liu L-Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat. 2008;11:63–76.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zitzmann K, Vlotides G, Brand S, Lahm H, Spöttl G, Göke B, et al. Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer. 2012;19:423–34.PubMedGoogle Scholar
  13. 13.
    Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.PubMedGoogle Scholar
  14. 14.
    Zdychová J, Komers R. Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 2005;54:1–16.PubMedGoogle Scholar
  15. 15.
    Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008;415:333–44.PubMedGoogle Scholar
  16. 16.
    Young CD, Anderson SM. Sugar and fat - that’s where it’s at: metabolic changes in tumors. Breast Cancer Res. 2008;10:202.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chin YR, Toker A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal. 2009;21:470–6.PubMedGoogle Scholar
  18. 18.
    Matheny RW, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood). 2009;234:1264–70.Google Scholar
  19. 19.
    Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3’-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol. 2003;13:507–18.PubMedGoogle Scholar
  20. 20.
    Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61:3986–97.PubMedGoogle Scholar
  21. 21.
    Krześlak A. Akt kinase: a key regulator of metabolism and progression of tumors. Postepy Hig Med Dosw (Online). 2010;64:490–503.Google Scholar
  22. 22.
    Mendoza MC, Blenis J. PHLPPing it off: phosphatases get in the Akt. Mol Cell. 2007;25:798–800.PubMedGoogle Scholar
  23. 23.
    Böhle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg. 1999;384:133–40.PubMedGoogle Scholar
  24. 24.
    Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci. 2003;8:e261–9.PubMedGoogle Scholar
  25. 25.
    Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15:1953–62.PubMedGoogle Scholar
  27. 27.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–8.PubMedGoogle Scholar
  28. 28.
    Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancer (Basel). 2011;3:3242–78.Google Scholar
  29. 29.
    Ahima RS, Bjorbaek C, Osei S, Flier JS. Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology. 1999;140:2755–62.PubMedGoogle Scholar
  30. 30.
    Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA. Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology. 2004;145:4103–12.PubMedGoogle Scholar
  31. 31.
    Dicou E, Attoub S, Gressens P. Neuroprotective effects of leptin in vivo and in vitro. Neuroreport. 2001;12:3947–51.PubMedGoogle Scholar
  32. 32.
    Cui H, Cai F, Belsham DD. Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through c-Fos and ATF1. FASEB J. 2006;20:2654–6.PubMedGoogle Scholar
  33. 33.
    El Homsi M, Ducroc R, Claustre J, Jourdan G, Gertler A, Estienne M, et al. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol. 2007;293:G365–73.PubMedGoogle Scholar
  34. 34.
    Wolf G, Hamann A, Han DC, Helmchen U, Thaiss F, Ziyadeh FN, et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis [seecomments]. Kidney Int. 1999;56:860–72.PubMedGoogle Scholar
  35. 35.
    Sierra-Honigmann MR, Nath AK, Murakami C, García-Cardeña G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281:1683–6.PubMedGoogle Scholar
  36. 36.
    Uotani S, Bjørbaek C, Tornøe J, Flier JS. Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes. 1999;48:279–86.PubMedGoogle Scholar
  37. 37.
    Descheemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP-1-, AP-2-, and Sp1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem. 1992;267:15086–91.PubMedGoogle Scholar
  38. 38.
    Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13:781–92.PubMedGoogle Scholar
  39. 39.
    Berchem G, Glondu M, Gleizes M, Brouillet J-P, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21:5951–5.PubMedGoogle Scholar
  40. 40.
    Tews DS. Adhesive and invasive features in gliomas. Pathol Res Pract. 2000;196:701–11.PubMedGoogle Scholar
  41. 41.
    Szala S, Jarosz M, Smolarczyk R, Cichoń T. ‘Vicious circles’ of glioblastoma tumors: vascularization and invasiveness. Postepy Hig Med Dosw (Online). 2012;66:888–900.Google Scholar
  42. 42.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Chi AS, Sorensen AG, Jain RK, Batchelor TT. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist. 2009;14:621–36.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Skinner HD, Zheng JZ, Fang J, Agani F, Jiang B-H. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279:45643–51.PubMedGoogle Scholar
  45. 45.
    Xia C, Meng Q, Cao Z, Shi X, Jiang B-H. Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. J Cell Physiol. 2006;209:56–66.PubMedGoogle Scholar
  46. 46.
    Pietsch T, Valter MM, Wolf HK, von Deimling A, Huang HJ, Cavenee WK, et al. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol. 1997;93:109–17.PubMedGoogle Scholar
  47. 47.
    Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul M. Antiangiogenic and antitumor effects of a protein kinase Cbeta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res. 2001;7:634–40.PubMedGoogle Scholar
  48. 48.
    Chan AS, Leung SY, Wong MP, Yuen ST, Cheung N, Fan YW, et al. Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am J Surg Pathol. 1998;22:816–26.PubMedGoogle Scholar
  49. 49.
    Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A. 2002;99:9462–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Stupack DG, Cheresh DA. Integrins and angiogenesis. Curr Top Dev Biol. 2004;64:207–38.PubMedGoogle Scholar
  51. 51.
    Stein GH. T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol. 1979;99:43–54.PubMedGoogle Scholar
  52. 52.
    Price SJ, Whittle IR, Ashkan K, Grundy P, Cruickshank G, UK-HGG Study Group. NICE guidance on the use of carmustine wafers in high grade gliomas: a national study on variation in practice. Br J Neurosurg. 2012;26:331–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57.PubMedGoogle Scholar
  54. 54.
    Paul-Samojedny M, Suchanek R, Borkowska P, Pudełko A, Owczarek A, et al. Knockdown of AKT3 (PKBγ) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. Biomed Res Int. 2014;2014(ID 768181):1–12.Google Scholar
  55. 55.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.PubMedGoogle Scholar
  56. 56.
    Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JFM. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8:187–98.PubMedGoogle Scholar
  57. 57.
    Jiang B-H, Liu L-Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 2008;1784:150–8.PubMedGoogle Scholar
  58. 58.
    Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Litherland GJ, Dixon C, Lakey RL, Robson T, Jones D, Young DA, et al. Synergistic collagenase expression and cartilage collagenolysis are phosphatidylinositol 3-kinase/Akt signaling-dependent. J Biol Chem. 2008;283:14221–9.PubMedGoogle Scholar
  60. 60.
    Pore N, Gupta AK, Cerniglia GJ, Maity A. HIV protease inhibitors decrease VEGF/HIF-1alpha expression and angiogenesis in glioblastoma cells. Neoplasia. 2006;8:889–95.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18:1135–49.PubMedGoogle Scholar
  62. 62.
    Yeh W-L, Lu D-Y, Lee M-J, Fu W-M. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia. 2009;57:454–64.PubMedGoogle Scholar
  63. 63.
    Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010;70:3494–504.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fukuda H, Mochizuki S, Abe H, Okano HJ, Hara-Miyauchi C, Okano H, et al. Host-derived MMP-13 exhibits a protective role in lung metastasis of melanoma cells by local endostatin production. Br J Cancer. 2011;105:1615–24.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L. CXCR4 promotes oral squamous cell carcinoma migration and invasion through inducing expression of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res. 2011;9:161–72.PubMedGoogle Scholar
  66. 66.
    Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem. 2012;287:38716–28.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11:1454–66.PubMedGoogle Scholar
  68. 68.
    Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett. 1998;435:29–34.PubMedGoogle Scholar
  69. 69.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401:82–5.PubMedGoogle Scholar
  70. 70.
    Rutka J, Matsuzawa K, Hubbard S, Fukuyama K, Becker L, Stetlerstevenson W, et al. Expression of timp-1, timp-2, 72-kda and 92-kda type-iv collagenase transcripts in human astrocytoma cell-lines - correlation with astrocytoma cell invasiveness. Int J Oncol. 1995;6:877–84.PubMedGoogle Scholar
  71. 71.
    Pagenstecher A, Wussler EM, Opdenakker G, Volk B, Campbell IL. Distinct expression patterns and levels of enzymatic activity of matrix metalloproteinases and their inhibitors in primary brain tumors. J Neuropathol Exp Neurol. 2001;60:598–612.PubMedGoogle Scholar
  72. 72.
    Wild-Bode C, Weller M, Wick W. Molecular determinants of glioma cell migration and invasion. J Neurosurg. 2001;94:978–84.PubMedGoogle Scholar
  73. 73.
    Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis. 1999;17:555–66.PubMedGoogle Scholar
  74. 74.
    Deryugina EI, Bourdon MA, Luo GX, Reisfeld RA, Strongin A. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci. 1997;110(Pt 19):2473–82.PubMedGoogle Scholar
  75. 75.
    Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, et al. High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol. 1998;36:21–9.PubMedGoogle Scholar
  76. 76.
    Du R, Petritsch C, Lu K, Liu P, Haller A, Ganss R, et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 2008;10:254–64.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, et al. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One. 2011;6:e20614.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Wick W, Wagner S, Kerkau S, Dichgans J, Tonn JC, Weller M. BCL-2 promotes migration and invasiveness of human glioma cells. FEBS Lett. 1998;440:419–24.PubMedGoogle Scholar
  79. 79.
    Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.PubMedGoogle Scholar
  80. 80.
    Gomis-Rüth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389:77–81.PubMedGoogle Scholar
  81. 81.
    Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103:1237–41.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9:407–15.PubMedGoogle Scholar
  83. 83.
    Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.PubMedGoogle Scholar
  84. 84.
    Van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Cairns B, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest. 1999;104:1613–20.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhou Y-H, Hu Y, Mayes D, Siegel E, Kim JG, Mathews MS, et al. PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor A. J Neurooncol. 2010;96:191–200.PubMedGoogle Scholar
  86. 86.
    Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006;66:3197–204.PubMedGoogle Scholar
  87. 87.
    Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61:5215–22.PubMedGoogle Scholar
  88. 88.
    Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res. 1997;57:3860–4.PubMedGoogle Scholar
  89. 89.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.PubMedGoogle Scholar
  90. 90.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394:485–90.PubMedGoogle Scholar
  91. 91.
    Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol. 2006;78:233–47.PubMedGoogle Scholar
  92. 92.
    Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle. 2008;7:2553–61.PubMedGoogle Scholar
  93. 93.
    Wang F, Barfield E, Dutta S, Pua T, Fishman DA. VEGFR-2 silencing by small interference RNA (siRNA) suppresses LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol. 2009;115:414–23.PubMedGoogle Scholar
  94. 94.
    Ghosh S, Basu M, Roy SS. ETS-1 protein regulates vascular endothelial growth factor-induced matrix metalloproteinase-9 and matrix metalloproteinase-13 expression in human ovarian carcinoma cell line SKOV-3. J Biol Chem. 2012;287:15001–15.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest. 2000;106:511–21.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74:111–22.PubMedGoogle Scholar
  97. 97.
    Krüger A, Sanchez-Sweatman OH, Martin DC, Fata JE, Ho AT, Orr FW, et al. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene. 1998;16:2419–23.PubMedGoogle Scholar
  98. 98.
    Ahonen M, Baker AH, Kähäri VM. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998;58:2310–5.PubMedGoogle Scholar
  99. 99.
    Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 1999;79:1347–55.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, et al. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis. 1996;17:1805–11.PubMedGoogle Scholar
  101. 101.
    Perego C, Vanoni C, Massari S, Raimondi A, Pola S, Cattaneo MG, et al. Invasive behaviour of glioblastoma cell lines is associated with altered organisation of the cadherin-catenin adhesion system. J Cell Sci. 2002;115:3331–40.PubMedGoogle Scholar
  102. 102.
    Sivaparvathi M, Sawaya R, Chintala SK, Go Y, Gokaslan ZL, Rao JS. Expression of cathepsin D during the progression of human gliomas. Neurosci Lett. 1996;208:171–4.PubMedGoogle Scholar
  103. 103.
    Victor BC, Anbalagan A, Mohamed MM, Sloane BF, Cavallo-Medved D. Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res. 2011;13:R115.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lombardi G, Burzyn D, Mundiñano J, Berguer P, Bekinschtein P, Costa H, et al. Cathepsin-L influences the expression of extracellular matrix in lymphoid organs and plays a role in the regulation of thymic output and of peripheral T cell number. J Immunol. 2005;174:7022–32.PubMedGoogle Scholar
  105. 105.
    Handley CJ, Mok MT, Ilic MZ, Adcocks C, Buttle DJ, Robinson HC. Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol. 2001;20:543–53.PubMedGoogle Scholar
  106. 106.
    Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J. 1992;282(Pt 1):273–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Monika Paul-Samojedny
    • 1
  • Adam Pudełko
    • 2
  • Renata Suchanek-Raif
    • 1
  • Małgorzata Kowalczyk
    • 1
  • Anna Fila-Daniłow
    • 1
  • Paulina Borkowska
    • 1
  • Jan Kowalski
    • 1
  1. 1.Department of Medical GeneticsSchool of Pharmacy with the Division of Laboratory Medicine, Medical University of SilesiaKatowicePoland
  2. 2.Department of Clinical Chemistry and Laboratory DiagnosticsSchool of Pharmacy with the Division of Laboratory Medicine, Medical University of SilesiaKatowicePoland

Personalised recommendations