Advertisement

Tumor Biology

, Volume 36, Issue 5, pp 3245–3249 | Cite as

Inhibition of progression of PanIN through antagonizing EGFR

  • Xiaojun He
  • Hui Zhang
  • Mei Xiao
  • Yalin Kong
  • Wenbing Li
  • Hongyi Zhang
Research Article
  • 139 Downloads

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an extremely malignant tumor with high lethality in humans. Pancreatic intraepithelial neoplasia (PanIN) is the predominant precancerous lesion for PDAC. Although PanIN is frequently detected in the normal and inflamed pancreas, only a few of PanIN eventually progress into PDAC. Thus, inhibition of PanIN-to-PDAC conversion is critical for preventing the occurrence of PDAC. Here, we evaluated the effect of inhibition of epidermal growth factor receptor (EGFR) signaling on the progression of low-grade PanIN into high-grade PDAC in an established mouse PDAC model (Ptf1a-Cre; K-rasG12D). We found that intraductal infusion of EGFR inhibitors at 12 weeks of age, which induced sustained inhibition of EGFR signaling in the pancreas, significantly decreased the incidence of high-grade PanIN in these mice at 24 weeks of age. Thus, our study suggests that inhibition of EGFR signaling may prevent development of PDAC.

Keywords

Pancreatic ductal adenocarcinoma (PDAC) Pancreatic intraepithelial neoplasia (PanIN) Epidermal growth factor receptor (EGFR) 

Notes

Conflicts of interest

None

References

  1. 1.
    Han H, Von Hoff DD. Snapshot: pancreatic cancer. Cancer Cell. 2013;23:424–424.e421.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shi W, Yin J, Chen Z, Chen H, Liu L, Meng Z. Cyr61 promotes growth of pancreatic carcinoma via nuclear exclusion of p27. Tumour Biol. 2014;35:11147–51.CrossRefPubMedGoogle Scholar
  3. 3.
    di Magliano MP, Logsdon CD. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology. 2013;144:1220–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stanger BZ, Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology. 2013;144:1170–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Arda HE, Benitez CM, Kim SK. Gene regulatory networks governing pancreas development. Dev Cell. 2013;25:5–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen J, Huang Q, Wang F. Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMedGoogle Scholar
  7. 7.
    Ding H, Zhu Y, Chu T, Wang S. Epidermal growth factor induces foxo1 nuclear exclusion to activate mmp7-mediated metastasis of larynx carcinoma. Tumour Biol. 2014;35:9987–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol. 2014;35:5593–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced foxo1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ye Y, Zhou X, Li X, Tang Y, Sun Y, Fang J. Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13. Tumour Biol. 2014;35:10891–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Hakonen E, Ustinov J, Eizirik DL, Sariola H, Miettinen PJ, Otonkoski T. In vivo activation of the Pi3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia. 2014;57:970–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Perini MV, Montagnini AL, Coudry R, Patzina R, Penteado S, Abdo EE, Diniz A, Jukemura J, da Cunha JE. Prognostic significance of epidermal growth factor receptor overexpression in pancreas cancer and nodal metastasis. ANZ Journal of Surgery. 2013Google Scholar
  15. 15.
    Hurtado M, Lozano JJ, Castellanos E, Lopez-Fernandez LA, Harshman K, Martinez AC, et al. Activation of the epidermal growth factor signalling pathway by tissue plasminogen activator in pancreas cancer cells. Gut. 2007;56:1266–74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ozawa S, Ueda M, Ando N, Abe O, Shimizu N. Epidermal growth factor receptors in cancer tissues of esophagus, lung, pancreas, colorectum, breast and stomach. Jpn J Cancer Res. 1988;79:1201–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Siveke JT, Crawford HC. KRAS above and beyond—EGFR in pancreatic cancer. Oncotarget. 2012;3:1262–3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Troiani T, Martinelli E, Capasso A, Morgillo F, Orditura M, De Vita F, et al. Targeting EGFR in pancreatic cancer treatment. Curr Drug Targets. 2012;13:802–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Walsh N, Kennedy S, Larkin A, Corkery B, O’Driscoll L, Clynes M, et al. EGFR and HER2 inhibition in pancreatic cancer. Investig New Drugs. 2013;31:558–66.CrossRefGoogle Scholar
  20. 20.
    Jimenez V, Ayuso E, Mallol C, Agudo J, Casellas A, Obach M, et al. In vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia. 2011;54:1075–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C, et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes. 2006;55:875–84.CrossRefPubMedGoogle Scholar
  22. 22.
    Xiao X, Guo P, Prasadan K, Shiota C, Peirish L, Fischbach S, et al. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nat Protoc. 2014;9:2719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xiao X, Guo P, Shiota C, Prasadan K, El-Gohary Y, Wiersch J, et al. Neurogenin3 activation is not sufficient to direct duct-to-beta cell transdifferentiation in the adult pancreas. J Biol Chem. 2013;288:25297–308.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379–89.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Xiao X, Wiersch J, El-Gohary Y, Guo P, Prasadan K, Paredes J, et al. Tgfbeta receptor signaling is essential for inflammation-induced but not beta-cell workload-induced beta-cell proliferation. Diabetes. 2013;62:1217–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li L, Shaw PE. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem. 2002;277:17397–405.CrossRefPubMedGoogle Scholar
  30. 30.
    Sun Y, Fry DW, Vincent P, Nelson JM, Elliott W, Leopold WR. Growth inhibition of nasopharyngeal carcinoma cells by EGF receptor tyrosine kinase inhibitors. Anticancer Res. 1999;19:919–24.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Xiaojun He
    • 1
  • Hui Zhang
    • 1
  • Mei Xiao
    • 1
  • Yalin Kong
    • 1
  • Wenbing Li
    • 1
  • Hongyi Zhang
    • 1
  1. 1.Department of Hepatobiliary SurgeryAir Force General Hospital of PLABeijingChina

Personalised recommendations