Skip to main content

Advertisement

Log in

Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes

  • Research Article
  • Published:
Tumor Biology

Abstract

Glycolysis has been shown to be required for the cell growth and proliferation in several cancer cells. However, prostate cancer cells were accused of using more fatty acid than glucose to meet their bioenergetic demands. The present study was designed to evaluate the involvement of hexokinase and CPT-1 in the cell growth and proliferation of human prostate cancer cell lines, PC3, and LNCaP-FGC-10. Hexokinase and CPT-1 activities were examined in the presence of different concentrations of their inhibitors, lonidamine and etomoxir, to find the concentration of maximum inhibition ([I max]). To assess cell viability and proliferation, dimethylthiazol (MTT) assay was carried out using [I max] for 24, 48, and 72 h on PC3 and LNCaP cells. Apoptosis was determined using annexin-V, caspase-3 activity assay, Hoechst 33258 staining, and evaluation of mitochondrial membrane potential (MMP). Moreover, ATP levels were measured following lonidamine and etomoxir exposure. In addition, to define the impact of exogenous fatty acid on the cell growth and proliferation, CPT-1 activity was evaluated in the presence of palmitate (50 μM). Hexokinase and CPT-1 activities were significantly inhibited by lonidamine [600 μM] and etomoxir [100 μM] in both cell lines. Treatment of the cells with lonidamine [600 μM] resulted in a significant ATP reduction, cell viability and apoptosis, caspase-3 activity elevation, MMP reduction, and appearance of apoptosis-related morphological changes in the cells. In contrast, etomoxir [100 μM] just decreased ATP levels in both cell lines without significant cell death and apoptosis. Compared with glucose (2 g/L), palmitate intensified CPT-1 activity in both cell lines, especially in LNCaP cells. In addition, activity of CPT-1 was higher in LNCaP than PC3 cells. Our results suggest that prostate cancer cells may metabolize glucose as a source of bioenergetic pathways. ATP could also be produced by long-chain fatty acid oxidation. In addition, these data might suggest that LNCaP is more compatible with palmitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Warburg O. Über den stoffwechsel menschlicher tumorzellen. J Mol Med. 1925;4:2396–7.

    Google Scholar 

  2. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–43.

    Article  PubMed  Google Scholar 

  3. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006;66:632–7.

    Article  CAS  PubMed  Google Scholar 

  4. Swietach P, Vaughan-Jones RD, Harris AL. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 2007;26:299–310.

    Article  CAS  PubMed  Google Scholar 

  5. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70:2465–75.

    Article  CAS  PubMed  Google Scholar 

  7. Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS, et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther. 2008;7:3546–55.

    Article  CAS  PubMed  Google Scholar 

  8. Singh G, Lakkis CL, Laucirica R, Epner DE. Regulation of prostate cancer cell division by glucose. J Cell Physiol. 1999;180:431–8.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9:230–4.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 2010;30:369–74.

    PubMed  Google Scholar 

  11. Sinha K. Elevated α-methylacyl-CoA racemase enzymatic activity. Am J Pathol2004;164:787-793

  12. Rubin M, Zhou M, Dhanasekaran SM. α-Methylacyl-CoA racemase as tissue biomarker of PC. JAMA 2002;287:1662-1670

  13. Luo J, Zha S, Gage WR, Dunn TA, et al. α-Methylacyl-CoA racemase; a new molecular marker for prostate cancer. Cancer Res 2002; 62:2220–2226.

  14. Jiang Z, W.B.A., Rock K L, Xu Y, Savas L, Khan A, et al., P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol 2001; 25:13971404.

  15. Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA. Alpha-methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol 2002; 26:926-931.

  16. Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate. 2005;63:316–23.

    Article  CAS  PubMed  Google Scholar 

  17. Brawer MK. Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol. 2005;7(7):S21–6.

    PubMed  PubMed Central  Google Scholar 

  18. Floridi A, Paggi MG, Marcante ML, Silvestrini B, Caputo A, de Martino C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst. 1981;66:497–9.

    CAS  PubMed  Google Scholar 

  19. Floridi A, Paggi MG, D'Atri S, De Martino C, Marcante ML, Silvestrini B, et al. Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells. Cancer Res. 1981;41:4661–6.

    CAS  PubMed  Google Scholar 

  20. Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci. 1977;74:3735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu FY, Taylor WA, Hurd JA, Hatch GM. Etomoxir mediates differential metabolic channeling of fatty acid and glycerol precursors into cardiolipin in H9c2 cells. J Lipid Res. 2003;44:415–23.

    Article  CAS  PubMed  Google Scholar 

  22. Morillas M, Clotet J, Rubí B, Serra D, Arino J, Hegardt F, et al. Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues. Biochem J. 2000;351:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerondaes P, Alberti K, Agius L. Interactions of inhibitors of carnitine palmitoyltransferase I and fibrates in cultured hepatocytes. Biochem J. 1988;253:169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001;276:14890–5.

    Article  CAS  PubMed  Google Scholar 

  25. Robey RB, Raval BJ, Ma J, Santos AV. Thrombin is a novel regulator of hexokinase activity in mesangial cells. Kidney Int. 2000;57:2308–18.

    Article  CAS  PubMed  Google Scholar 

  26. Karlic H, Lohninger S, Koeck T, Lohninger A. Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J Histochem Cytochem. 2002;50:205–12.

    Article  CAS  PubMed  Google Scholar 

  27. Salami S, Karami-Tehrani F. Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem. 2003;36:247–53.

    Article  CAS  PubMed  Google Scholar 

  28. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes. 2000;49:1932–8.

    Article  CAS  PubMed  Google Scholar 

  30. Epstein JI, Carmichael M, Partin AW. OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology. 1995;45:81–6.

    Article  CAS  PubMed  Google Scholar 

  31. Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, et al. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003;1:707–15.

    CAS  PubMed  Google Scholar 

  32. Oudard S, Poirson F, Miccoli L, Bourgeois Y, Vassault A, Poisson M, et al. Mitochondria-bound hexokinase as target for therapy of malignant gliomas. Int J Cancer. 1995;62:216–22.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206:2049–57.

    Article  CAS  PubMed  Google Scholar 

  34. Kumaravel G, Gandour R, Krueger M, Ramsay R. Comparison of the active sites of the purified carnitine acyltransferases from peroxisomes and mitochondria by using a reaction-intermediate analogue. Biochem J. 1993;294:645–51.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murthy M, Pande SV. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci. 1987;84:378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pimenta AS, Gaidhu MP, Habib S, So M, Fediuc S, Mirpourian M, et al. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol. 2008;217:478–85.

    Article  CAS  PubMed  Google Scholar 

  37. Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18:846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Higgins L, Withers H, Garbens A, Love H, Magnoni L, Hayward S, et al. Hypoxia and the metabolic phenotype of prostate cancer cells. Biochim Biophys Acta (BBA)-Bioenerg. 2009;1787:1433–43.

    Article  CAS  Google Scholar 

  39. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25:1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruderman NB, Dean D. Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. J Basic Clin Physiol Pharmacol. 1998;9:295–308.

    Article  CAS  PubMed  Google Scholar 

  41. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta (BBA)-Bioenerg. 2011;1807:726–34.

    Article  CAS  Google Scholar 

  42. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;105–10.

  43. Lu W, Pelicano H, Huang P. Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell. 2010;18:199–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pouyssegur J, Franchi A, Silvestre P. Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts. Nature. 1980;287:445–7.

    Article  CAS  PubMed  Google Scholar 

  45. Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS One. 2007;2:e447.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Farese RV, Standaert ML, Arnold TP, Yamada K, Musunuru K, Hernandez H, et al. Preferential activation of microsomal diacylglycerol/protein kinase C signaling during glucose treatment (de novo phospholipid synthesis) of rat adipocytes. J Clin Investig. 1994;93:1894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miele C, Paturzo F, Teperino R, Sakane F, Fiory F, Oriente F, et al. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization. J Biol Chem. 2007;282:31835–43.

    Article  CAS  PubMed  Google Scholar 

  48. Burg JS, Espenshade PJ. Glucose controls phosphoregulation of HMG-CoA reductase through the PP2A-related phosphatase Ppe1 and Insig in fission yeast. J Biol Chem. 2011;111:233452.

    Google Scholar 

  49. Mathews EH, Liebenberg L, Pelzer R. High-glycolytic cancers and their interplay with the body’s glucose demand and supply cycle. Med Hypotheses. 2011;76:157–65.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang A, Wu Y, Lai H, Yew D. Apoptosis—a brief review. Neuroembryol Aging. 2005;3:47–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by a Ph.D. grant (Rouhallah Najjar Sadeghi) from Tarbiat Modares University and also by the Iranian National Science Foundation (INSF Code: 91046780). The authors thank them for their supports.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Karami-Tehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, R.N., Karami-Tehrani, F. & Salami, S. Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumor Biol. 36, 2893–2905 (2015). https://doi.org/10.1007/s13277-014-2919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2919-4

Keywords

Navigation