Skip to main content

Advertisement

Log in

(-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation

  • Research Article
  • Published:
Tumor Biology

Abstract

The cancer stem cell (CSC) theory states that many types of cancer, including nasopharyngeal cancer (NPC), are initiated from and maintained by CSCs, which may be responsible for tumor relapse and resistance to therapy. It is imperative that nasopharyngeal cancer stem cells (NPCSCs) be specifically targeted to eradicate NPC and prevent recurrence. Epigallocatechin-3-gallate (EGCG) inhibits cancer progression by attenuating NF-κB p65 activity, which is upregulated in CSCs and plays an important role in epithelial–mesenchymal transition (EMT). The purpose of this study is to confirm the self-renewal and migration inhibitory effects of EGCG toward NPCSCs and to clarify its mechanism of activity. We enriched and characterized NPCSCs by collecting spheroid-derived cells grown in serum-free medium (SFM) and examined the effects of EGCG on the characteristics of NPCSCs and studied the underlying mechanisms using soft agar colony assays, transwell migration assays, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, immunofluorescence staining, and xenograft studies. NPC spheroids enriched from NPC cell lines acquired CSC traits and underwent EMT. EGCG inhibited the NPCSCs’ self-renewal and migration and reversed EMT, and combined treatment with EGCG and cisplatin reduced the growth of CSC tumor xenografts. Moreover, EGCG inhibited NF-κB p65 activity by modulating the cellular localization of p65 and decreasing the transcriptional regulation of NF-κB p65 on Twist1 expression. NF-κB p65 is a novel therapeutic target in NPCSCs, and the inhibition of activated NF-κB p65 in CSCs by EGCG may offer an effective treatment for NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cell

NPC:

Nasopharyngeal cancer

NPCSCs:

Nasopharyngeal cancer stem cells

SC:

Spheroid cell

EMT:

Epithelial–mesenchymal transition

EGCG:

Epigallocatechin-3-gallate

SFM:

Serum-free medium

NF-κB:

Nuclear factor κB

RT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

DMSO:

Dimethylsulfoxide

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

EGF:

Epidermal growth factor

bFGF:

Human recombinant basic fibroblast growth factor

DMEM/F12:

Dulbecco’s modified Eagle’s medium F12

References

  1. Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:421–9.

    Article  PubMed  Google Scholar 

  2. Lee AW, Yau TK, Wong DH, Chan EW, Yeung RM, Ng WT, et al. Treatment of stage IV(A-B)nasopharyngeal carcinoma by induction-concurrent chemoradiotherapy and accelerated fractionation. Int J Radiat Oncol Biol Phys. 2005;63:1331–8.

    Article  PubMed  Google Scholar 

  3. Yeh SA, Tang Y, Lui CC, Huang YJ, Huang EY. Treatment outcomes and late complications of 849 patients with nasopharyngeal carcinoma treated with radiotherapy alone. Int J Radiat Oncol Biol Phys. 2005;62:672–9.

    Article  PubMed  Google Scholar 

  4. Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell. 2004;5:423–8.

    Article  CAS  PubMed  Google Scholar 

  5. Le QT, Tate D, Koong A, Gibbs IC, Chang SD, Adler JR, et al. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56:1046–54.

    Article  PubMed  Google Scholar 

  6. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  CAS  PubMed  Google Scholar 

  7. Er O. Cancer stem cells in solid tumors. Onkol. 2009;32:605–9.

    Article  Google Scholar 

  8. Lang SH, Anderson E, Fordham R, Collins AT. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev. 2010;19:537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target? J Natl Cancer Inst. 2004;96:583–5.

    Article  PubMed  Google Scholar 

  10. Sakariassen PO, Immervoll H, Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia. 2007;9:882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su J, Xu XH, Huang Q, Lu MQ, Li DJ, Xue F, et al. Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line. Arch Med Res. 2011;42:15–21.

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 2007;67:3716–24.

    Article  CAS  PubMed  Google Scholar 

  13. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010;5:e12445.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  CAS  PubMed  Google Scholar 

  15. Shankar S, Ganapathy S, Srivastava RK. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci. 2007;12:4881–99.

    Article  CAS  PubMed  Google Scholar 

  16. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9:429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ju J, Lu G, Lambert JD, Yang CS. Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol. 2007;17:395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landis-Piwowar KR, Huo C, Chen D, Milacic V, Shi G, Chan TH, et al. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 2007;67:4303–10.

    Article  CAS  PubMed  Google Scholar 

  19. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci. 2008;13:440–52.

    Article  PubMed  Google Scholar 

  20. Shirakami Y, Shimizu M, Adachi S, Sakai H, Nakagawa T, Yasuda Y, et al. (-)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci. 2009;100:1957–62.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi H, Nomata K, Mori K, Matsuo M, Miyaguchi T, Noguchi M, et al. The preventive effect of green tea on the gap junction intercellular communication in renal epithelial cells treated with a renal carcinogen. Anticancer Res. 2004;24:3757–62.

    CAS  PubMed  Google Scholar 

  22. Tang GQ, Yan TQ, Guo W, Ren TT, Peng CL, Zhao H, et al. (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol. 2010;136:1179–85.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu BH, Chen HY, Zhan WH, Wang CY, Cai SR, Wang Z, et al. (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer. World J Gastroenterol. 2011;17:2315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishimura N, Hartomo TB, Pham TV, Lee MJ, Yamamoto T, Morikawa S, et al. Epigallocatechin gallate inhibits sphere formation of neuroblastoma BE(2)-C cells. Environ Health Prev Med. 2012;17:246–51.

    Article  CAS  PubMed  Google Scholar 

  25. Chen D, Pamu S, Cui Q, Chan TH, Dou QP. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg Med Chem. 2012;20:3031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK. Inhibition of sonic Hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer. 2012;131:30–40.

    Article  CAS  PubMed  Google Scholar 

  27. Burnett J, Newman B, Sun D. Targeting cancer stem cells with natural products. Curr Drug Targets. 2012;13:1054–64.

    Article  CAS  PubMed  Google Scholar 

  28. Hayden MS, Ghosh S. Shared principles in NF-kappa B signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  29. Yan Z, Yong-Guang T, Fei-Jun L, Fa-Qing T, Min T, Ya C. Interference effect of epigallocatechin-3-gallate on targets of nuclear factor kB signal transduction pathways activated by EB virus encoded latent membrane protein 1. IntJ Biochem Cell Biol. 2004;36:1473–81.

    CAS  Google Scholar 

  30. Uchibori R, Tsukahara T, Mizuguchi H, Saga Y, Urabe M, Mizukami H, et al. NF-κB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res. 2013;73:364–72.

    Article  CAS  PubMed  Google Scholar 

  31. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afaq F, Adhami VM, Ahmad N, Mukhtar H. Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea constituent (-)-epigallocatechin-3-gallate. Oncogene. 2003;22:1035–44.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene. 2004;23:2507–22.

    Article  CAS  PubMed  Google Scholar 

  34. Syed DN, Afaq F, Kweon MH, Hadi N, Bhatia N, Spiegelman VS, et al. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene. 2007;26:673–82.

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article  CAS  PubMed  Google Scholar 

  36. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, et al. Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res. 2012;72:1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pham CG, Bubici C, Zazzeroni F, Knabb JR, Papa S, Kuntzen C, et al. Upregulation of twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol. 2007;27:3920–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frame FM, Maitland NJ. Cancer stem cells, models of study and implications of therapy resistance mechanisms. Adv Exp Med Biol. 2011;720:105–18.

    Article  CAS  PubMed  Google Scholar 

  39. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu Y, Fu L. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res. 2012;2:340–56.

    PubMed  PubMed Central  Google Scholar 

  41. Na HK, Surh YJ. Intracellular signaling network as a prime chemopreventive target of (-)-epigallocatechin gallate. Mol Nutr Food Res. 2006;50:152–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jung YD, Ellis LM. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol. 2001;82:309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.

    Article  CAS  PubMed  Google Scholar 

  44. Chen D, Pamu S, Cui Q, Chan TH, Dou QP. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg Med Chem. 2012;20:3031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111:419–27.

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res. 2005;11:2735–46.

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki CY, Barberi TJ, Ghosh P, Longo DL. Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem. 2005;280:34538–47.

    Article  CAS  PubMed  Google Scholar 

  48. Huber MA, Beug H, Wirth T. Epithelial-mesenchymal transition: NF-kappaB takes center stage. Cell Cycle. 2004;3:1477–80.

    Article  CAS  PubMed  Google Scholar 

  49. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-Kb is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–44.

    Article  CAS  PubMed  Google Scholar 

  51. Li S, Kendall SE, Raices R, Finlay J, Covarrubias M, Liu Z, et al. TWIST1 associates with NF-κB subunit RELA via carboxyl-terminal WR domain to promote cell autonomous invasion through IL8 production. BMC Biol. 2012;10:73.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Do SI, Kim JY, Kang SY, Lee JJ, Lee JE, Nam SJ, et al. Expression of TWIST1, Snail, Slug, and NF-κB and methylation of the TWIST1 promoter in mammary phyllodes tumor. Tumor Biol. 2013;34:445–53.

    Article  CAS  Google Scholar 

  53. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol. 2010;12:982–92.

    Article  PubMed  Google Scholar 

  54. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 2008;68:7742–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the General Program of the National Natural Science Foundation of China (No. 81171365).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Wu, SL., Lu, SM. et al. (-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation. Tumor Biol. 36, 2747–2761 (2015). https://doi.org/10.1007/s13277-014-2899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2899-4

Keywords

Navigation