Advertisement

Tumor Biology

, Volume 36, Issue 4, pp 2737–2745 | Cite as

Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2

  • Ming Zhuang
  • Qin Shi
  • Xiuwei Zhang
  • Yongbin Ding
  • Liuqun Shan
  • Xia Shan
  • Jiaqi Qian
  • Xin Zhou
  • Zebo Huang
  • Wei Zhu
  • Yin Ding
  • Wenfang Cheng
  • Ping Liu
  • Yongqian Shu
Research Article

Abstract

We investigated the possible role of miR-143 in the development of cisplatin resistance in human gastric cancer cell line. miR-143 was detected by quantitative real-time PCR. Cisplatin resistance changes of cells was tested via MTT assay. Target genes of miR-143 were verified by dual-luciferase activity assay. Immunohistochemistry, immunofluorescence staining, Western blot, cell proliferation, and clonogenic and apoptosis assay were used to elucidate the mechanism of miR-143 in cisplatin resistance formation. miR-143 was downregulated in gastric cancer tissues and cell lines. It was also downregulated in cisplatin-resistant gastric cancer cell line SGC7901/cisplatin (DDP), which was concurrent with the upregulation of IGF1R and BCL2, compared with the parental SGC7901 cell line, respectively. Overexpressed miR-143 sensitized SGC7901/DDP cells to cisplatin. The luciferase activity suggested that IGF1R and BCL2 were both target genes of miR-143. Enforced miR-143 reduced its target proteins, inhibited SGC7901/DDP cells proliferation, and sensitized SGC7901/DDP cells to DDP-induced apoptosis. Our findings suggested that hsa-miR-143 could modulate cisplatin resistance of human gastric cancer cell line at least in part by targeting IGF1R and BCL2.

Keywords

miR-143 Cisplatin resistance IGF1R BCL2 

Abbreviations

miRNAs

MicroRNAs

DDP

Cisplatin

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

Notes

Acknowledgments

The authors are grateful to the fund support by the National Natural Science Foundation of China (Grant number 81201705) and the Natural Science Foundation of Jiangsu Province (Grant number BK2012442).

Conflicts of interest

None.

Supplementary material

13277_2014_2898_MOESM1_ESM.docx (665 kb)
ESM 1 (DOCX 665 kb)

References

  1. 1.
    Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33:9–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:153–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311.CrossRefPubMedGoogle Scholar
  6. 6.
    Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncol. 2009;77(1):12–21.CrossRefGoogle Scholar
  7. 7.
    Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 2010;17(6):398–408.CrossRefPubMedGoogle Scholar
  8. 8.
    Võsa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer. 2013;132(12):2884–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Lui WO, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007;67(13):6031–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou F, Li S, Meng HM, Qi LQ, Gu L. MicroRNA and histopathological characterization of pure mucinous breast carcinoma. Cancer Biol Med. 2013;10(1):22–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 2007;98(12):1914–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M, Enokida H. Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol. 2013;10(7):396–404.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao DS, Chen Y, Jiang H, Lu JP, Zhang G, Geng J, et al. Serum miR-210 and miR-30a expressions tend to revert to fetal levels in Chinese adult patients with chronic heart failure. Cardiovasc Pathol. 2013;22(6):444–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu W, Shan X, Wang TS, Shu YQ, Liu P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 2010;127(11):2520–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Ge J, Chen Z, Wu S, Chen J, Li X, Li J, et al. Expression levels of insulin-like growth factor-1 and multidrug resistance-associated protein-1 indicate poor prognosis in patients with gastric cancer. Digestion. 2009;80(3):148–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Hopkins A, Crowe PJ, Yang JL. Effect of type 1 insulin-like growth factor receptor targeted therapy on chemotherapy in human cancer and the mechanisms involved. J Cancer Res Clin Oncol. 2010;136(5):639–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Murayama T, Inokuchi M, Takagi Y, Yamada H, Kojima K, Kumagai J, et al. Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer. 2009;100(5):782–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res. 2009;15(5):1821–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Tanida S, Mizoshita T, Ozeki K, Tsukamoto H, Kamiya T, Kataoka H, et al. Mechanisms of cisplatin-induced apoptosis and of cisplatin sensitivity: potential of BIN1 to act as a potent predictor of cisplatin sensitivity in gastric cancer treatment. Int J Surg Oncol. 2012;2012, 862879.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Eckstein N, Servan K, Hildebrandt B, Politz A, von Jonquières G, Wolf-Kummeth S, et al. Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res. 2009;69(7):2996–3003.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu SG, Qin XG, Zhao BS, Qi B, Yao WJ, Wang TY, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett. 2013;5(5):1639–42.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer. 2013;4(5):350–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ming Zhuang
    • 1
  • Qin Shi
    • 2
  • Xiuwei Zhang
    • 3
  • Yongbin Ding
    • 4
  • Liuqun Shan
    • 4
  • Xia Shan
    • 3
  • Jiaqi Qian
    • 1
  • Xin Zhou
    • 1
  • Zebo Huang
    • 1
  • Wei Zhu
    • 1
  • Yin Ding
    • 5
  • Wenfang Cheng
    • 2
  • Ping Liu
    • 1
  • Yongqian Shu
    • 1
  1. 1.Department of OncologyClinical Medical College of Yangzhou UniversityYangzhouChina
  2. 2.Department of GastroenterologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  3. 3.Department of RespirationThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
  4. 4.Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  5. 5.State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations