Tumor Biology

, Volume 36, Issue 4, pp 2709–2724 | Cite as

Promoter polymorphism of FASL confers protection against female-specific cancers and those of FAS impact the cancers divergently

  • Sateesh Reddy Nallapalle
  • Sarika Daripally
  • V. T. S Vidudala Prasad
Research Article


We investigated risk association of FAS (−1377 G>A and −670 A>G) and FASL (−844 T>C) promoter polymorphisms with breast, ovarian, cervical, and endometrial cancers and report that the FASL −844 CC genotype was protective against breast, ovarian, cervical, and endometrial cancers (P ≤ 0.01). On the other hand, FAS −1377 GA and AA variants increased risk of breast cancer. However, the GA variant of FAS −1377 was also found to be a risk factor for cervical cancer. In contrast, FAS −670 AG variant significantly lowered risk of breast cancer. Further, we also observed that risk association of co-occurrence of FAS and/or FASL variants with the cancers varied as compared to the presence of individual polymorphisms. Although risk and protective haplotypes of FAS SNPs were observed across the cancer phenotypes, the association of the haplotypes was significant for breast cancer alone with a 3-fold enhanced risk. The protective effect of the FASL CC genotype seen in this study suggests that similar biomolecular mechanisms involving FASL might play a role in female-specific cancers.


FAS FASL Breast cancer Ovarian cancer Cervical cancer Endometrial cancer Gynecological cancers 



The research was partly funded by a grant from Indian Council of Medical Research (ICMR), New Delhi (to VVTSP; grant no. 5/8/10-3(Oto)/CFP/11-NCD-1), and by Basavatarakam Indo-American Cancer Hospital and Research Institute (BIACH&RI), Hyderabad, India. Mr. Sateesh works for the ICMR grant. Mrs. Sarika is thankful to Council for Scientific and Industrial Research, Government of India, for the award of Junior Research Fellow. We also like to thank Acharya Nagarjuna University, Nagarjuna Nagar, AP, India, for registering Mrs. Sarika for her doctoral degree. We would like to thank Dr. SarithaKatta,volunteer researcher at the R&D, BIACH&RI, for her help in preparing the manuscript. We also acknowledge the technical help provided by the research assistants of the R&D.


  1. 1.
  2. 2.
    Porichi O, Nikolaidou ME, Apostolaki A, Tserkezoglou A, Arnogiannaki N, Kassanos D, et al. BCL-2, BAX and P53 expression profiles in endometrial carcinoma as studied by real-time PCR and immunohistochemistry. Anticancer Res. 2009;29:3977–82.PubMedGoogle Scholar
  3. 3.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Beiner ME, Finch A, Rosen B, Lubinski J, Moller P, Ghadirian P, et al. Hereditary ovarian cancer clinical study group; the risk of endometrial cancer in women with BRCA1 and BRCA2 mutations. A prospective study. Gynecol Oncol. 2007;104:7–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Nsouli-Maktabi HH, Henson DE, Younes N, Young HA, Cleary SD. Second primary breast, endometrial, and ovarian cancers in Black and White breast cancer survivors over a 35-year time span: effect of age. Breast Cancer Res Treat. 2011;129:963–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Segev Y, Pal T, Rosen B, McLaughlin JR, Sellers TA, Risch HA, et al. Risk factors for ovarian cancers with and without microsatellite instability. Int J Gynecol Cancer. 2013;23:1010–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000;256:58–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Contreras DN, Krammer PH, Potkul RK, Bu P, Rossi JL, Kaufmann AM, et al. Cervical cancer cells induce apoptosis of cytotoxic T lymphocytes. J Immunother. 2000;23:67–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Ibrahim R, Frederickson H, Parr A, Ward Y, Moncur J, Khleif SN. Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism. Cancer. 2006;106:1065–77.CrossRefPubMedGoogle Scholar
  10. 10.
    O’Connell J, Bennett MW, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: a molecular mechanism of tumor immune privilege. Mol Med. 1997;3:294–300.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O’Connell J, Bennett MW, O’Sullivan GC, Roche D, Kelly J, Collins JK, et al. Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. J Pathol. 1998;186:240–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Kornmann M, Ishiwata T, Kleeff J, Beger HG, Korc M. Fas and Fas-ligand expression in human pancreatic cancer. Ann Surg. 2000;231:368–79.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Herrnring C, Reimer T, Jeschke U, Makovitzky J, Krüger K, Gerber B, et al. Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol. 2000;113:189–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim Y-S, Kim KH, Choi J-A, Lee JH, Kim HK, Won NH, et al. Fas (APO-1/CD95) ligand and Fas expression in renal cell carcinomas. Arch Pathol Lab Med. 2000;124:687–93.PubMedGoogle Scholar
  15. 15.
    Sasaki Y, Hori S, Oda K, Okada T, Takimoto M. Both ETA and ETB receptors are involved in mitogen-activated protein kinase activation and DNA synthesis of astrocytes: study using ETB receptor-deficient rats (aganglionosis rats). Eur J Neurosci. 1998;10:2984–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Cao Y, Miao XP, Huang MY, Deng L, Lin DX, Zeng YX, et al. Polymorphisms of death pathway genes FAS and FASL and risk of nasopharyngeal carcinoma. Mol Carcinog. 2010;49:944–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou JH, Chen HZ, Ye F, Lu WG, Xie X. Fas-mediated pathway and apoptosis in control cervix, cervical intraepithelial neoplasia and cervical squamous cancer. Oncol Rep. 2006;16:307–11.PubMedGoogle Scholar
  18. 18.
    Zhang Z, Wang LE, Sturgis EM, El-Naggar AK, Hong WK, Amos CI, et al. Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2006;12:5596–602.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu L, Zhou X, Jiang F, Qiu MT, Zhang Z, Yin R, et al. FASL rs763110 polymorphism contributes to cancer risk: an updated meta-analysis involving 43,295 subjects. PLoS One. 2013;8:e74543.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhong-Xing Z, Yuan-Yuan M, Hai Zhen M, Jian-Gang Z, Li-Feng Z. FAS-1377 G/A (rs2234767) polymorphism and cancer susceptibility: a meta-analysis of 17,858 cases and 24,311 controls. PLoS One. 2013;8:e73700.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ueda M, Terai Y, Kanda K, Kanemura M, Takehara M, Yamaguchi H, et al. Fas gene promoter −670 polymorphism in gynecological cancer. Int J Gynecol Cancer. 2006;16:179–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Gormus U, Ergen A, Yilmaz H, Dalan B, Berkman S, Isbir T. Fas −1377 A/G and FasL −844 T/C gene polymorphisms epithelial ovarian cancer. Anticancer Res. 2007;27:991–4.PubMedGoogle Scholar
  23. 23.
    Biggar RJ, Wohlfahrt J, Melbye M. Digoxin use and the risk of cancers of the corpus uteri, ovary and cervix. Int J Cancer. 2012;131:716–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Cunat S, Hoffmann P, Pujol P. Estrogens and epithelial ovarian cancer. Gynecol Oncol. 2004;94:25–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Newfield L, Bradlow HL, Sepkovic DW, Auborn K. Estrogen metabolism and the malignant potential of human papillomavirus immortalized keratinocytes. Proc Soc Expt Biol Med. 1998;217:322–6.CrossRefGoogle Scholar
  26. 26.
    Jaita G, Candolfi M, Zaldivar V, Zárate S, Ferrari L, Pisera D, et al. Estrogens up-regulate the Fas/FasL apoptotic pathway in lactotropes. Endocrinology. 2005;146:4737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li H, Guo HY, Sun T, Zhou YF, Lin DX, Zhang WH, et al. Association between Fas/Fas L genes promoter polymorphisms and pathogenic risk of cervical cancer. Zhonghua Zhong Liu Za Zhi. 2009;31:38–41.PubMedGoogle Scholar
  28. 28.
    Crew KD, Gammon MD, Terry MB, Zhang FF, Agrawal M, Eng SM, et al. Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk. Carcinogenesis. 2007;28:2548–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Kang S, Dong SM, Seo SS, Kim JW, Park SY. FAS −1377 G/A polymorphism and the risk of lymph node metastasis in cervical cancer. Cancer Genet Cytogenet. 2008;180:1–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Lai HC, Lin WY, Lin YW, Chang CC, Yu MH, Chen CC, et al. Genetic polymorphisms of FAS and FASL (CD95/CD95L) genes in cervical carcinogenesis: an analysis of haplotype and gene-gene interaction. Gynecol Oncol. 2005;99:113–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Chatterjee K, Engelmark M, Gyllensten U, Dandara C, van der Merwe L, Galal U, et al. Fas and FasL gene polymorphisms are not associated with cervical cancer but differ among Black and Mixed-ancestry South Africans. BMC Res Notes. 2009;2:238.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, et al. Functional polymorphisms of FAS and FASL gene and breast cancer—pilot study of 134 cases. PLoS One. 2013;8:e53075.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang W, Zheng Z, Yu W, Lin H, Cui B, Cao F. Polymorphisms of the FAS and FASL genes and risk of breast cancer. Oncol Lett. 2012;3:625–8.PubMedGoogle Scholar
  34. 34.
    KordiTamandani DM, Sobti RC, Shekari M. Association of Fas-670 gene polymorphism with risk of cervical cancer in North Indian population. Clin Exp Obstet Gynecol. 2008;35:183–6.Google Scholar
  35. 35.
    Zucchi F, da Silva ID, Ribalta JC, de Souza NC, Speck NM, Girão MJ, et al. Fas/CD95 promoter polymorphism gene and its relationship with cervical carcinoma. Eur J Gynaecol Oncol. 2009;30:142–4.PubMedGoogle Scholar
  36. 36.
    Mellemkjaer L, Friis S, Olsen JH, Scélo G, Hemminki K, Tracey E, et al. Risk of second cancer among women with breast cancer. Int J Cancer. 2006;118:2285–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Molina-Montes E, Pollán M, Payer T, Molina E, Dávila-Arias C, Sánchez MJ. Risk of second primary cancer among women with breast cancer: a population-based study in Granada (Spain). Gynecol Oncol. 2013;130:340–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Cano A, Serra V, Rivera J, Monmeneu R, Marzo C. Expression of estrogen receptors, progesterone receptors, and an estrogen receptor-associated protein in the human cervix during the menstrual cycle and menopause. Fertil Steril. 1990;54:1058–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Chaudhuri B, Crist KA, Mucci SJ, Thomford NR, Chaudhuri PK. Estrogen receptor in carcinoma in situ of the cervix. J Surg Oncol. 1992;49:103–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Song J, Rutherford T, Naftolin F, Brown S, Mor G. Hormonal regulation of apoptosis and the Fas and Fas ligand system in human endometrial cells. Mol Hum Reprod. 2002;8:447–55.CrossRefPubMedGoogle Scholar
  41. 41.
    Zahid M, Beseler CL, Hall JB, LeVan T, Cavalieri EL, Rogan EG. Unbalanced estrogen metabolism in ovarian cancer. Int J Cancer. 2014;134:2414–23.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dallal CM, Tice JA, Buist DS, Bauer DC, Lacey Jr JV, Cauley JA, et al. Brinton LA; B∼FIT Research Group. Estrogen metabolism and breast cancer risk among postmenopausal women: a case-cohort study within B∼FIT. Carcinogenesis. 2014;35:346–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast. 2013;2:S38–43.CrossRefGoogle Scholar
  44. 44.
    Leithäuser F, Dhein J, Mechtersheimer G, Koretz K, Brüderlein S, Henne C, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in control and neoplastic cells. Lab Invest. 1993;69:415–29.PubMedGoogle Scholar
  45. 45.
    Beaber EF, Malone KE, Tang MT, Barlow WE, Porter PL, Daling JR, et al. Oral contraceptives and breast cancer risk overall and by molecular subtype among young women. Cancer Epidemiol Biomarkers Prev. 2014;23:755–64.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Anothaisintawee T, Wiratkapun C, Lerdsitthichai P, Kasamesup V, Wongwaisayawan S, Srinakarin J, et al. Risk factors of breast cancer: a systematic review and meta-analysis. Asia Pac J Public Health. 2013;25:368–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Fambrini M, Buccoliero AM, Pieralli A, Andersson KL, Mattei A, Scarselli G, et al. Tamoxifen, endometrial cancer risk and liquid based cytology. A paradigmatic case. Minerva Ginecol. 2011;63:465–70.PubMedGoogle Scholar
  48. 48.
    Jones ME, van Leeuwen FE, Hoogendoorn WE, Mourits MJ, Hollema H, van Boven H, et al. Endometrial cancer survival after breast cancer in relation to tamoxifen treatment: pooled results from three countries. Breast Cancer Res. 2012;14:R91.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Miller S, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:3.Google Scholar
  50. 50.
    Kriplani A, Banerjee K. An overview of age of onset of menopause in northern India. Maturitas. 2005;52:199–204.CrossRefPubMedGoogle Scholar
  51. 51.
    Kapur P, Sinha B, Pereira BM. Measuring climacteric symptoms and age at natural menopause in an Indian population using the Greene Climacteric Scale. Menopause. 2009;16:378–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang B, Sun T, Xue L, Han X, Zhang B, Lu N, et al. Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis. 2007;28:1067–73.CrossRefPubMedGoogle Scholar
  53. 53.
    Li Y, Hao YL, Kang S, Zhou RM, Wang N, Qi BL. Genetic polymorphisms in the Fas and FasL genes are associated with epithelial ovarian cancer risk and clinical outcomes. Gynecol Oncol. 2013;128:584–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Zeng J, Fang Y, Li P. FAS-1377 A/G polymorphism in breast cancer: a meta-analysis. Tumour Biol. 2014;35:2575–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Li K, Li W, Zou H, Zhao L. Association between FAS 1377 G>A polymorphisms and breast cancer susceptibility: a meta-analysis. Tumour Biol. 2014;35(1):351–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang Z, Gu J, Nie W, Xu J, Huang G, Guan X. Quantitative assessment of the association between three polymorphisms in FAS and FASL gene and breast cancer risk. Tumour Biol. 2014;35:3035–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen X, Mo W, Peng Q, Su X. Lack of association between Fas rs180082 polymorphisms and risk of cervical cancer: an update by meta-analysis. BMC Med Genet. 2013;14:71.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang Y, Tong S, Guan L, Na F, Zhao W, Wei L. CD95 rs1800682 polymorphisms and cervical cancer risk: evidence from meta-analysis. Tumour Biol. 2014;35:1785–90.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang GQ, Bao L, Zhao XX, Zhang J, Nan KJ. Associations between Fas/FasL polymorphisms and susceptibility to cervical cancer: a meta-analysis. Tumour Biol. 2014;35:4107–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhu J, Lu L, Cheng X, Xie R, Chen Z, Li Y, et al. Association between CD95L polymorphism and cervical cancer risk: evidence from a meta-analysis. Tumour Biol. 2014;35:5137–42.CrossRefPubMedGoogle Scholar
  61. 61.
    Tong N, Zhang L, Sheng X, Wang M, Zhang Z, Fang Y, et al. Functional polymorphisms in FAS, FASL and CASP8 genes and risk of childhood acute lymphoblastic leukemia: a case–control study. Leuk Lymphoma. 2012;53:1360–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhao H, Zheng L, Li X, Wang L. FasL gene -844T/C mutation of esophageal cancer in South China and its clinical significance. Sci Rep. 2014;4:3866.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ter-Minassian M, Zhai R, Asomaning K, Su L, Zhou W, Liu G, et al. Apoptosis gene polymorphisms, age, smoking and the risk of non-small cell lung cancer. Carcinogenesis. 2008;29:2147–52.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lei D, Sturgis EM, Wang LE, Liu Z, Zafereo ME, Wei Q, et al. FAS and FASLG genetic variants and risk for second primary malignancy in patients with squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev. 2010;19:1484–91.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mahfoudh W, Bouaouina N, Gabbouj S. Chouchane. FASL-844 T/C polymorphism: a biomarker of good prognosis of breast cancer in the Tunisian population. Hum Immunol. 2012;73:932–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Xu Y, Deng Q, He B, Pan Y, Li R, Gao T, et al. The diplotype Fas -1377A/-670G as a genetic marker to predict a lower risk of breast cancer in Chinese women. Tumour Biol. 2014;35:9147–61.CrossRefPubMedGoogle Scholar
  67. 67.
    de Carvalho-Neto PB, dos Santos M, de Carvalho MB, Mercante AM, dos Santos VP, Severino P, et al. FAS/FASL expression profile as a prognostic marker in squamous cell carcinoma of the oral cavity. PLoS One. 2013;8:e69024.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Verim L, Timirci-Kahraman O, Akbulut H, Akbas A, Ozturk T, Turan S, et al. Functional genetic variants in apoptosis-associated FAS and FASL genes and risk of bladder cancer in a Turkish population. In Vivo. 2014;28:397–402.PubMedGoogle Scholar
  69. 69.
    Owen-Schaub LB, Radinsky R, Kruzel E, Berry K, Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994;54:1580–6.PubMedGoogle Scholar
  70. 70.
    Mapara MY, Bargou R, Zugck C, Döhner H, Ustaoglu F, Jonker RR, et al. APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol. 1993;23:702–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Borset M, Hjorth-Hansen H, Johnsen AC, Seidel C, Waage A, Espevik T, et al. Apoptosis, proliferation and NF-kappaB activation induced by agonistic Fas antibodies in the human myeloma cell line OH-2: amplification of Fas-mediated apoptosis by tumor necrosis factor. Eur J Haematol. 1999;63:345–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Mitsiades CS, Poulaki V, Fanourakis G, Sozopoulos E, McMillin D, Wen Z, et al. Fas signaling in thyroid carcinomas is diverted from apoptosis to proliferation. Clin Cancer Res. 2006;12:3705–12.CrossRefPubMedGoogle Scholar
  73. 73.
    Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66:233–43.CrossRefPubMedGoogle Scholar
  74. 74.
    Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem. 1992;267:10709–15.PubMedGoogle Scholar
  75. 75.
    Huang QR, Morris D, Manolios N. Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 1997;34:577–82.CrossRefPubMedGoogle Scholar
  76. 76.
    Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003;63:4327–30.PubMedGoogle Scholar
  77. 77.
    Engelmark MT, Renkema KY, Gyllensten UB. No evidence of the involvement of the Fas −670 promoter polymorphism in cervical cancer in situ. Int J Cancer. 2004;112:1084–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol. 2003;170:132–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Sun T, Zhou Y, Li H, Han X, Shi Y, Wang L, et al. FASL -844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer. J Exp Med. 2005;202:967–74.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K, et al. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. J Cancer. 2000;82:1682–8.CrossRefGoogle Scholar
  81. 81.
    Takagi A, Imai A, Horibe S, Ohno T, Tamaya T. Lack of evidence for expression of Fas ligand in Fas-bearing tumors. Oncol Rep. 1998;5:377–80.PubMedGoogle Scholar
  82. 82.
    Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res. 1999;5:3529–33.PubMedGoogle Scholar
  83. 83.
    Kondera-Anasz Z, Mielczarek-Palacz A, Sikora J. Soluble Fas receptor and soluble Fas ligand in the serum of women with uterine tumors. Apoptosis. 2005;10:1143–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Hefler L, Mayerhofer K, Nardi A, Reinthaller A, Kainz C, Tempfer C. Serum soluble Fas levels in ovarian cancer. Obstet Gynecol. 2000;96:65–9.PubMedGoogle Scholar
  85. 85.
    Kanemitsu S, Ihara K, Saifddin A, Otsuka T, Takeuchi T, Nagayama J, et al. A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J Rheumatol. 2002;29:1183–8.PubMedGoogle Scholar
  86. 86.
    Watson CJ, O’Kane H, Maxwell P, Sharaf O, Petak I, Hyland PL, et al. Identification of a methylation hotspot in the death receptor Fas/CD95 in bladder cancer. Int J Oncol. 2012;40:645–54.PubMedGoogle Scholar
  87. 87.
    Ghanim V, Herrmann H, Heller G, Peter B, Hadzijusufovic E, Blatt K, et al. 5-azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand. Blood. 2012;119:4242–52.CrossRefPubMedGoogle Scholar
  88. 88.
    Yurchenko M, Shlapatska LM, Sidorenko SP. The multilevel regulation of CD95 signaling outcome. Exp Oncol. 2012;34:153–9.PubMedGoogle Scholar
  89. 89.
    Sancho-Martinez I, Martin-Villalba A. Tyrosine phosphorylation and CD95: a FAScinating switch. Cell Cycle. 2009;8:838–42.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Sateesh Reddy Nallapalle
    • 1
  • Sarika Daripally
    • 1
    • 2
  • V. T. S Vidudala Prasad
    • 1
  1. 1.Research and DevelopmentBasavatarakam Indo-American Cancer Hospital and Research Institute (BIACH&RI)HyderabadIndia
  2. 2.Acharya Nagarjuna UniversityAndhra PradeshIndia

Personalised recommendations