Tumor Biology

, Volume 36, Issue 1, pp 129–141 | Cite as

Focusing on long noncoding RNA dysregulation in gastric cancer

  • Lu Gan
  • Midie Xu
  • Yi Zhang
  • Xia Zhang
  • Weijian Guo


As the discovery of functions of long noncoding RNA (lncRNA) HOTAIR lifts ncRNA to new levels, large numbers of research have been demonstrated for the roles of lncRNAs in diverse biological processes, such as development, cellular differentiation, and a wide range of diseases including cancer. And, recent studies have discovered that lncRNAs can participate in almost every step in the life cycle of gene regulation, including chromosome dosage compensation, imprinting, epigenetic regulation, nuclear and cytoplasmic trafficking, transcription, mRNA splicing, and translation, mainly in the four archetypes—signals, decoys, guides, and scaffolds. Unsurprisingly, accumulating studies have demonstrated that serious lncRNAs are dysregulated in gastric cancer (GC), one of the major causes of cancer-related mortality worldwide, and closely related to tumorigenesis, metastasis, or prognosis. In this review, we will discuss diverse functions of lncRNAs and highlight the growing evidence for the important roles of lncRNAs acting as biomarkers for the early diagnosis of GC, as indicators of GC prognosis, or even as therapeutic targets in GC.


Long noncoding RNAs Gastric cancer Dysregulation Function Biomarker 



Noncoding RNA




Small interfering RNAs


Long noncoding RNAs


Gastric cancer


X-inactive specific transcript


X-chromosome inactivation


Open reading frames


Homeobox transcription factors


Heterogeneous nuclear ribonucleoprotein K


Growth arrest-specific 5


Glucocorticoid receptor


Histone 3 lysine 4


Polycomb repressive complex 2


Colorectal cancer


Hepatocellular carcinoma


Epithelial-to-mesenchymal transition


Nonsmall cell lung cancer




Metastasis-associated lung adenocarcinoma transcript 1


Highly upregulated in liver cancer


IGF2 mRNA-binding proteins


Maternally expressed gene 3


Colon cancer-associated transcript-1


Gastric carcinoma high expressed transcript 1


GC-associated transcript 1


Fer-1-like protein 4


Small ubiquitin-like modifier 1 pseudogene 3


Multidrug resistance


MDR-related and upregulated lncRNA


ATP-binding cassette subfamily B, member 1


Receiver operating characteristic



This work was supported by grants from the National Natural Scientific Funding (81171909).

Conflicts of interest



  1. 1.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedGoogle Scholar
  3. 3.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding rnas. Cell. 2009;136:629–41.PubMedGoogle Scholar
  4. 4.
    Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microrna-related disease? Transl Res J Lab Clin Med. 2011;157:253–64.Google Scholar
  5. 5.
    Lindsay MA. Micrornas and the immune response. Trends Immunol. 2008;29:343–51.PubMedGoogle Scholar
  6. 6.
    Ling H, Fabbri M, Calin GA. Micrornas and other non-coding rnas as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedGoogle Scholar
  8. 8.
    Nana-Sinkam SP, Croce CM. Clinical applications for micrornas in cancer. Clin Pharmacol Ther. 2013;93:98–104.PubMedGoogle Scholar
  9. 9.
    O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for micrornas in the immune system. Nat Rev Immunol. 2010;10:111–22.PubMedGoogle Scholar
  10. 10.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-myc-regulated micrornas modulate e2f1 expression. Nature. 2005;435:839–43.PubMedGoogle Scholar
  11. 11.
    Rottiers V, Naar AM. Micrornas in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Tian W, Chen J, He H, Deng Y. Micrornas and drug resistance of breast cancer: Basic evidence and clinical applications. Clin Transl Oncol Off Publ Fed Spanish Oncol Soc Nat Cancer Inst Mexico. 2013;15:335–42.Google Scholar
  13. 13.
    Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, et al. Microrna-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of nf-kappab signaling. J Transl Med. 2014;12:33.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen Q, Ge X, Zhang Y, Xia H, Yuan D, Tang Q, et al. Plasma mir-122 and mir-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep. 2014;31:1863–70.PubMedGoogle Scholar
  15. 15.
    Ma L, Bajic VB, Zhang Z. On the classification of long non-coding rnas. RNA Biol. 2013;10:925–33.PubMedGoogle Scholar
  16. 16.
    Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human xist gene: Analysis of a 17 kb inactive x-specific rna that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71:527–42.PubMedGoogle Scholar
  17. 17.
    Mattick JS. Makunin IV: Non-coding rna. Hum Mol Genet. 2006;15(Spec No 1):R17–29.PubMedGoogle Scholar
  18. 18.
    Guttman M, Rinn JL. Modular regulatory principles of large non-coding rnas. Nature. 2012;482:339–46.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Batista PJ, Chang HY. Long noncoding rnas: cellular address codes in development and disease. Cell. 2013;152:1298–307.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding rnas in mammals. Nature. 2009;458:223–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding rna in human carcinomas. Mol Cancer. 2011;10:38.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding rnas and cancer: a new frontier of translational research? Oncogene. 2012;31:4577–87.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Clark MB, Mattick JS. Long noncoding rnas in cell biology. Semin Cell Dev Biol. 2011;22:366–76.PubMedGoogle Scholar
  25. 25.
    Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, et al. Long noncoding rnas in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010;11:14.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding rna tincr. Nature. 2013;493:231–5.PubMedGoogle Scholar
  27. 27.
    Fatica A, Bozzoni I. Long non-coding rnas: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.PubMedGoogle Scholar
  28. 28.
    Harries LW. Long non-coding rnas and human disease. Biochem Soc Trans. 2012;40:902–6.PubMedGoogle Scholar
  29. 29.
    Maruyama R, Suzuki H. Long noncoding rna involvement in cancer. BMB Rep. 2012;45:604–11.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding rnas. Mol Cell. 2011;43:904–14.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human hox loci by noncoding rnas. Cell. 2007;129:1311–23.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding rna maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, et al. Long noncoding rna hottip/hoxa13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology. 2014;59:911–23.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding rnas within cell-cycle promoters. Nat Genet. 2011;43:621–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding rna gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3:ra8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, et al. The air noncoding rna epigenetically silences transcription by targeting g9a to chromatin. Science. 2008;322:1717–20.PubMedGoogle Scholar
  38. 38.
    Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding rna. Science. 2011;331:76–9.PubMedGoogle Scholar
  39. 39.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding rna hotair reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.PubMedPubMedCentralGoogle Scholar
  40. 40.
    He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, et al. Long noncoding rnas: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20–7.PubMedGoogle Scholar
  41. 41.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding rna as modular scaffold of histone modification complexes. Science. 2010;329:689–93.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gil J, Peters G. Regulation of the ink4b-arf-ink4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7:667–77.PubMedGoogle Scholar
  43. 43.
    Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding rna anril and methylated histone h3 lysine 27 by polycomb cbx7 in transcriptional silencing of ink4a. Mol Cell. 2010;38:662–74.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding rna anril is required for the prc2 recruitment to and silencing of p15(ink4b) tumor suppressor gene. Oncogene. 2011;30:1956–62.PubMedGoogle Scholar
  45. 45.
    Nakagawa T, Endo H, Yokoyama M, Abe J, Tamai K, Tanaka N, et al. Large noncoding rna hotair enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013;436:319–24.PubMedGoogle Scholar
  46. 46.
    Tang L, Zhang W, Su B, Yu B. Long noncoding rna hotair is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res Int. 2013;2013:251098.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding rna hotair regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.PubMedGoogle Scholar
  48. 48.
    Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of mir-196a and hotair drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72:1126–36.PubMedGoogle Scholar
  49. 49.
    Hajjari M, Behmanesh M, Sadeghizadeh M, Zeinoddini M. Up-regulation of hotair long non-coding rna in human gastric adenocarcinoma tissues. Med Oncol. 2013;30:670.PubMedGoogle Scholar
  50. 50.
    Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, et al. Hotair is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32:1616–25.PubMedGoogle Scholar
  51. 51.
    Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding rna hotair predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18:1243–50.PubMedGoogle Scholar
  52. 52.
    Maass PG, Luft FC, Bahring S. Long non-coding rna in health and disease. J Mol Med. 2014;92:337–46.PubMedGoogle Scholar
  53. 53.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374:477–90.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ilson DH. Angiogenesis in gastric cancer: hitting the target? Lancet. 2014;383:4–6.PubMedGoogle Scholar
  55. 55.
    Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:2137–50.Google Scholar
  56. 56.
    Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, et al. Up-regulated long non-coding rna h19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279:3159–65.PubMedGoogle Scholar
  57. 57.
    Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse h19 gene. Nature. 1991;351:153–5.PubMedGoogle Scholar
  58. 58.
    Gabory A, Jammes H, Dandolo L. The h19 locus: role of an imprinted non-coding rna in growth and development. BioEssays News Rev Mol Cell Dev Biol. 2010;32:473–80.Google Scholar
  59. 59.
    Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, et al. Knockdown of long non-coding rna hotair suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci. 2013;9:587–97.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lee NK, Lee JH, Park CH, Yu D, Lee YC, Cheong JH, et al. Long non-coding rna hotair promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochem Biophys Res Commun. 2014;451:171–8.PubMedGoogle Scholar
  61. 61.
    Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, et al. Lnc rna hotair functions as a competing endogenous rna to regulate her2 expression by sponging mir-331-3p in gastric cancer. Mol Cancer. 2014;13:92.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang EB, Han L, Yin DD, Kong R, De W, Chen J. C-myc-induced, long, noncoding h19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol. 2014;31:914.PubMedGoogle Scholar
  63. 63.
    Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncrna h19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhuang M, Gao W, Xu J, Wang P, Shu Y. The long non-coding rna h19-derived mir-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor runx1. Biochem Biophys Res Commun. 2014;448:315–22.PubMedGoogle Scholar
  65. 65.
    Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, et al. Long noncoding rna anril indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of mir-99a/mir-449a. Oncotarget. 2014;5:2276–92.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin L, et al. Decreased expression of the long non-coding rna fendrr is associated with poor prognosis in gastric cancer and fendrr regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol. 2014;7:63.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y. Role of long non-coding rna hulc in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep. 2014;31:358–64.PubMedGoogle Scholar
  68. 68.
    Sun M, Xia R, Jin F, Xu T, Liu Z, De W, et al. Downregulated long noncoding rna meg3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35:1065–73.Google Scholar
  69. 69.
    Yan J, Guo X, Xia J, Shan T, Gu C, Liang Z, et al. Mir-148a regulates meg3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol. 2014;31:879.PubMedGoogle Scholar
  70. 70.
    Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, et al. Long noncoding rna ccat1, which could be activated by c-myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139:437–45.PubMedGoogle Scholar
  71. 71.
    Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, et al. Long non-coding rna ghet1 promotes gastric carcinoma cell proliferation by increasing c-myc mrna stability. FEBS J. 2014;281:802–13.PubMedGoogle Scholar
  72. 72.
    Sun W, Wu Y, Yu X, Liu Y, Song H, Xia T, et al. Decreased expression of long noncoding rna ac096655.1–002 in gastric cancer and its clinical significance. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34:2697–701.Google Scholar
  73. 73.
    Xiao B, Guo J. Long noncoding rna ac096655.1–002 has been officially named as gastric cancer-associated transcript 1, gacat1. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34:3271.Google Scholar
  74. 74.
    Shao Y, Chen H, Jiang X, Chen S, Li P, Ye M. et al. Low expression of lncrna-hmlincrna717 in human gastric cancer and its clinical significances. Tumour Biol J Int Soc Oncodev Biol Med. 2014.Google Scholar
  75. 75.
    Xu C, Shao Y, Xia T, Yang Y, Dai J, Luo L. et al. Lncrna-ac130710 targeting by mir-129-5p is upregulated in gastric cancer and associates with poor prognosis. Tumour Biol J Int Soc Oncodev Biol Med. 2014.Google Scholar
  76. 76.
    Park SM, Park SJ, Kim HJ, Kwon OH, Kang TW, Sohn HA, et al. A known expressed sequence tag, bm742401, is a potent lincrna inhibiting cancer metastasis. Exp Mol Med. 2013;45:e31.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Liu Z, Shao Y, Tan L, Shi H, Chen S, Guo J. Clinical significance of the low expression of fer1l4 in gastric cancer patients. Tumour Biol J Int Soc Oncodev Biol Med. 2014.Google Scholar
  78. 78.
    Chen X, Sun J, Song Y, Gao P, Zhao J, Huang X, et al. The novel long noncoding rna ac138128.1 may be a predictive biomarker in gastric cancer. Med Oncol. 2014;31:262.PubMedGoogle Scholar
  79. 79.
    Liu L, Yan B, Yang Z, Zhang X, Gu Q, Yue X. Ncrupar inhibits gastric cancer progression by down-regulating protease-activated receptor-1. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35:7821–9.Google Scholar
  80. 80.
    Mei D, Song H, Wang K, Lou Y, Sun W, Liu Z, et al. Up-regulation of sumo1 pseudogene 3 (sumo1p3) in gastric cancer and its clinical association. Med Oncol. 2013;30:709.PubMedGoogle Scholar
  81. 81.
    Lin X, Yang M, Xia T, Guo J. Increased expression of long noncoding rna abhd11-as1 in gastric cancer and its clinical significance. Med Oncol. 2014;31:42.PubMedGoogle Scholar
  82. 82.
    Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y. et al. Long non-coding rna gaplinc regulates cd44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014.Google Scholar
  83. 83.
    Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding rna mrul promotes abcb1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 2014;34:3182–93.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ding J, Li D, Gong M, Wang J, Huang X, Wu T, et al. Expression and clinical significance of the long non-coding rna pvt1 in human gastric cancer. OncoTargets Ther. 2014;7:1625–30.Google Scholar
  85. 85.
    Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, et al. Gastric juice long noncoding rna used as a tumor marker for screening gastric cancer. Cancer. 2014;120:3320–8.PubMedGoogle Scholar
  86. 86.
    Pang Q, Ge J, Shao Y, Sun W, Song H, Xia T, et al. Increased expression of long intergenic non-coding rna linc00152 in gastric cancer and its clinical significance. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35:5441–7.Google Scholar
  87. 87.
    DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor ii gene. Cell. 1991;64:849–59.PubMedGoogle Scholar
  88. 88.
    Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted h19 lncrna antagonizes let-7 micrornas. Mol Cell. 2013;52:101–12.PubMedGoogle Scholar
  89. 89.
    Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. Molecular subtypes and phenotypic expression of beckwith-wiedemann syndrome. Eur J Human Genet EJHG. 2005;13:1025–32.PubMedGoogle Scholar
  90. 90.
    Weksberg R, Smith AC, Squire J, Sadowski P. Beckwith-wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003;12(Spec No 1):R61–8.PubMedGoogle Scholar
  91. 91.
    Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, et al. The h19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A. 2008;105:12417–22.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The h19 non-coding rna is essential for human tumor growth. PLoS One. 2007;2:e845.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Woo CJ, Kingston RE. Hotair lifts noncoding rnas to new levels. Cell. 2007;129:1257–9.PubMedGoogle Scholar
  94. 94.
    Ishibashi M, Kogo R, Shibata K, Sawada G, Takahashi Y, Kurashige J, et al. Clinical significance of the expression of long non-coding rna hotair in primary hepatocellular carcinoma. Oncol Rep. 2013;29:946–50.PubMedGoogle Scholar
  95. 95.
    Liu XH, Liu ZL, Sun M, Liu J, Wang ZX, De W. The long non-coding rna hotair indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer. 2013;13:464.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding rna hotair is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104:458–64.PubMedGoogle Scholar
  97. 97.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding rna malat1 regulates alternative splicing by modulating sr splicing factor phosphorylation. Mol Cell. 2010;39:925–38.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Okugawa Y, Toiyama Y, Hur K, Toden S, Saigusa S, Tanaka K. et al. Metastasis-associated long non-coding rna drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis 2014.Google Scholar
  99. 99.
    Luo JH, Ren B, Keryanov S, Tseng GC, Rao UN, Monga SP, et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology. 2006;44:1012–24.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, et al. The long noncoding malat-1 rna indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2011;6:1984–92.Google Scholar
  101. 101.
    Shen L, Chen L, Wang Y, Jiang X, Xia H, Zhuang Z. Long noncoding rna malat1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neuro-Oncol. 2014.Google Scholar
  102. 102.
    Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, et al. Long non-coding rna malat1 promotes tumour growth and metastasis in colorectal cancer through binding to sfpq and releasing oncogene ptbp2 from sfpq/ptbp2 complex. Br J Cancer. 2014;111:736–48.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, et al. Malat1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the erk/mapk pathway. Cancer Biol Ther. 2014;15:806–14.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding rna malat1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.PubMedGoogle Scholar
  105. 105.
    Zhao Z, Chen C, Liu Y, Wu C. 17beta-estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing malat-1 rna level. Biochem Biophys Res Commun. 2014;445:388–93.PubMedGoogle Scholar
  106. 106.
    Liu SP, Yang JX, Cao DY, Shen K. Identification of differentially expressed long non-coding rnas in human ovarian cancer cells with different metastatic potentials. Cancer Biolo Med. 2013;10:138–41.Google Scholar
  107. 107.
    Wang J, Su L, Chen X, Li P, Cai Q, Yu B. et al. Malat1 promotes cell proliferation in gastric cancer by recruiting sf2/asf. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2014;68:557–564.Google Scholar
  108. 108.
    Yin D, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding rna gas5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol. 2014;31:253.PubMedGoogle Scholar
  109. 109.
    Tu ZQ, Li RJ, Mei JZ, Li XH. Down-regulation of long non-coding rna gas5 is associated with the prognosis of hepatocellular carcinoma. Int J Clin Exp Pathol. 2014;7:4303–9.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Pickard MR, Williams GT. Regulation of apoptosis by long non-coding rna gas5 in breast cancer cells: Implications for chemotherapy. Breast Cancer Res Treat. 2014;145:359–70.PubMedGoogle Scholar
  111. 111.
    Liu Z, Wang W, Jiang J, Bao E, Xu D, Zeng Y, et al. Downregulation of gas5 promotes bladder cancer cell proliferation, partly by regulating cdk6. PLoS One. 2013;8:e73991.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Qiao HP, Gao WS, Huo JX, Yang ZS. Long non-coding rna gas5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prevent APJCP. 2013;14:1077–82.Google Scholar
  113. 113.
    Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, et al. Decreased expression of long noncoding rna gas5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 2014;14:319.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of hulc, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding rna. Gastroenterology. 2007;132:330–42.PubMedGoogle Scholar
  115. 115.
    Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. Creb up-regulates long non-coding rna, hulc expression through interaction with microrna-372 in liver cancer. Nucleic Acids Res. 2010;38:5366–83.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Hammerle M, Gutschner T, Uckelmann H, Ozgur S, Fiskin E, Gross M, et al. Posttranscriptional destabilization of the liver-specific long noncoding rna hulc by the igf2 mrna-binding protein 1 (igf2bp1). Hepatology. 2013;58:1703–12.PubMedGoogle Scholar
  117. 117.
    Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, et al. Identification of an imprinted gene, meg3/gtl2 and its human homologue meg3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells Devoted Mol Cell Mech. 2000;5:211–20.Google Scholar
  118. 118.
    Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived meg3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88:5119–26.PubMedGoogle Scholar
  119. 119.
    Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the dlk1-meg3 locus in human hepatocellular carcinoma. PLoS One. 2012;7:e49462.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, et al. Meg3: a novel long noncoding potentially tumour-suppressing rna in meningiomas. J Neuro-Oncol. 2013;112:1–8.Google Scholar
  121. 121.
    Benetatos L, Vartholomatos G, Hatzimichael E. Meg3 imprinted gene contribution in tumorigenesis. Int J Cancer J Int Cancer. 2011;129:773–9.Google Scholar
  122. 122.
    Wang P, Ren Z, Sun P. Overexpression of the long non-coding rna meg3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113:1868–74.PubMedGoogle Scholar
  123. 123.
    Zhou Y, Zhang X, Klibanski A. Meg3 noncoding rna: a tumor suppressor. J Mol Endocrinol. 2012;48:R45–53.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, et al. Long non-coding rna meg3 inhibits nsclc cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, et al. Colon cancer associated transcript-1: a novel rna expressed in malignant and pre-malignant human tissues. Int J Cancer J Int Cancer. 2012;130:1598–606.Google Scholar
  126. 126.
    Alaiyan B, Ilyayev N, Stojadinovic A, Izadjoo M, Roistacher M, Pavlov V, et al. Differential expression of colon cancer associated transcript1 (ccat1) along the colonic adenoma-carcinoma sequence. BMC Cancer. 2013;13:196.PubMedPubMedCentralGoogle Scholar
  127. 127.
    He X, Tan X, Wang X, Jin H, Liu L, Ma L. et al. C-myc-activated long noncoding rna ccat1 promotes colon cancer cell proliferation and invasion. Tumour Biol J Int Soc Oncodevelopmental Biol Med 2014.Google Scholar
  128. 128.
    Chen S, Li P, Xiao B, Guo J. Long noncoding rna hmlincrna717 and ac130710 have been officially named as gastric cancer associated transcript 2 (gacat2) and gacat3, respectively. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35:8351–2.Google Scholar
  129. 129.
    Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, et al. Long noncoding rna associated-competing endogenous rnas in gastric cancer. Sci Rep. 2014;4:6088.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Doventas A, Bilici A, Demirell F, Ersoy G, Turna H, Doventas Y. Prognostic significance of cd44 and c-erb-b2 protein overexpression in patients with gastric cancer. Hepato-Gastroenterology. 2012;59:2196–201.PubMedGoogle Scholar
  131. 131.
    Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.PubMedGoogle Scholar
  132. 132.
    Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, et al. Colorectal neoplasia differentially expressed (crnde), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer. 2011;2:829–40.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal rnas by deep sequencing. BMC Genomics. 2013;14:319.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Xie H, Ma H, Zhou D. Plasma hulc as a promising novel biomarker for the detection of hepatocellular carcinoma. BioMed Res Int. 2013;2013:136106.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, et al. Circulating long non-coding rnas in plasma of patients with gastric cancer. Anticancer Res. 2013;33:3185–93.PubMedGoogle Scholar
  136. 136.
    Xu MD, Qi P, Du X. Long non-coding rnas in colorectal cancer: Implications for pathogenesis and clinical application. Modern Pathol Off J USA Can Acad Pathol Inc. 2014;27:1310–20.Google Scholar
  137. 137.
    Burnett JC, Rossi JJ. Rna-based therapeutics: current progress and future prospects. Chem Biol. 2012;19:60–71.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Lu Gan
    • 1
    • 2
  • Midie Xu
    • 2
    • 3
    • 4
  • Yi Zhang
    • 5
  • Xia Zhang
    • 6
  • Weijian Guo
    • 1
    • 2
  1. 1.Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
  4. 4.Institute of PathologyFudan UniversityShanghaiChina
  5. 5.Department of Clinical NutritionThe 452nd Hospital of PLAChengduChina
  6. 6.Department of Oncology, Changzheng HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations