Tumor Biology

, Volume 36, Issue 4, pp 2621–2629 | Cite as

Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy

  • Seyed Mohammad Ali Hosseini Rad
  • Taravat Bamdad
  • Majid Sadeghizadeh
  • Ehsan Arefian
  • Majid Lotfinia
  • Milad Ghanipour
Research Article


Transcription factor decoys (TFDs) are exogenous oligonucleotides which can compete by cis-elements in promoters or enhancers for binding to TFs and downregulating gene expression in a specific manner. It is believed that tumor mass originates from cancer stem cells (CSCs) which the same with embryonic stem cells (ESCs) have the properties of both pluripotency and self-renewal (stemness). Many transcription factors such as Nanog, Oct-4, Sox2, Klf4, and Sall4 act as master regulators in the maintenance of stemness in both cell types. Differentiation therapy is based on this theory that by differentiation of CSCs, tumor mass can be eliminated with common cancer therapy methods. To our knowledge, the present study is the first report of a TFD approach against master regulator of stemness, Nanog, Oct-4, and Klf4, for downregulation purposes in P19 embryonic carcinoma stem cell. Different simple and complex decoys against Nanog, OCT-4, Sox2, and Klf4 were designed and used for this purpose. The results showed that the applied decoys especially Nanog-specific decoy decreased the expression of downstream genes.


Transcription factor decoy Stemness Cancer Stem Cells P19 cells Nanog 



This project has been funded by Tarbiat Modares University and Iran National Science Foundation under contract no. 88000962. The authors also thank Stem Cell Technology Research Center which supported some parts of the experiments and appreciate Nadia Chamani for the assistance in preparing figures.

Conflicts of interest

Authors disclose any commercial associations that might create a conflict of interest in connection with submitted manuscripts.


  1. 1.
    Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Dass CR, Choong PF. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy. Cancer Cell Int. 2006;6:17.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar R, Dammai V, Yadava PK, Kleinau S. Gene targeting by ribozyme against TNF-alpha mRNA inhibits autoimmune arthritis. Gene Ther. 2005;12:1486–93.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang DY, Lai BH, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J Mol Biol. 2002;318:33–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000.CrossRefPubMedGoogle Scholar
  6. 6.
    Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific PCR-generated DNA fragments. Breast Cancer Res Treat. 1998;49:227–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor "decoy" strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res. 1998;82:1023–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function. Clin Immunol Immunopathol. 1998;86:170–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol. 2006;70:1621–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun. 2003;310:1048–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Suzuki J, Isobe M, Morishita R, Izawa A, Yamazaki S, Okubo Y, et al. E2F decoy suppresses E-selectin expression in murine cardiac allograft arteriopathy. Transplant Proc. 1999;31:2018–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100:4138–43.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet. 2010;197:46–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi T, Togo S, Kumamoto T, Watanabe K, Kubota T, Ichikawa Y, et al. Transfection of NF-kappaB decoy oligodeoxynucleotides into macrophages reduces murine fatal liver failure after excessive hepatectomy. J Surg Res. 2009;154:179–86.CrossRefPubMedGoogle Scholar
  16. 16.
    Ohmori K, Takeda S, Miyoshi S, Minami M, Nakane S, Ohta M, et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation. Eur J Cardiothorac Surg. 2005;27:23–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Kawamura I, Morishita R, Tsujimoto S, Manda T, Tomoi M, Tomita N, et al. Intravenous injection of oligodeoxynucleotides to the NF-kappaB binding site inhibits hepatic metastasis of M5076 reticulosarcoma in mice. Gene Ther. 2001;8:905–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Chae YM, Park KK, Lee IK, Kim JK, Kim CH, Chang YC. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther. 2006;13:430–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Park JH, Jo JH, Kim KH, Kim SJ, Lee WR, Park KK, et al. Antifibrotic effect through the regulation of transcription factor using ring type-Sp1 decoy oligodeoxynucleotide in carbon tetrachloride-induced liver fibrosis. J Gene Med. 2009;11:824–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Alper O, Bergmann-Leitner ES, Abrams S, Cho-Chung YS. Apoptosis, growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells: protein kinase a downregulation and cytoplasmic export of CRE-binding proteins. Mol Cell Biochem. 2001;218:55–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu WM, Scott KA, Shahin S, Propper DJ. The in vitro effects of CRE-decoy oligonucleotides in combination with conventional chemotherapy in colorectal cancer cell lines. Eur J Biochem. 2004;271:2773–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Cho WH, Kim HT, Koo JH, Lee IK. Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. Transplant Proc. 2006;38:2161–3.CrossRefPubMedGoogle Scholar
  23. 23.
    Holschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S, et al. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res. 2006;71:527–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Nishitsuji H, Tamura Y, Fuse T, Habu Y, Miyano-Kurosaki N, Takaku H. Inhibition of HIV-1 replication by 5'LTR decoy RNA. Nucleic Acids Res Suppl. 2001;1:141–2.CrossRefGoogle Scholar
  25. 25.
    Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCr5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther. 2005;12:900–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang J, Yamada O, Sakamoto T, Yoshida H, Araki H, Murata T, et al. Inhibition of hepatitis C virus replication by pol III-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology. 2005;342:276–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMedGoogle Scholar
  28. 28.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Sell S. Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev. 2005;1:197–205.CrossRefPubMedGoogle Scholar
  30. 30.
    Ivanova N, Dobrin R, Lu R, Kotenko L, Levorse J, DeCoste C, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;44:533–8.CrossRefGoogle Scholar
  31. 31.
    Dejosez M, Krumenacker JS, Zitur LJ, Passeri M, Chu LF, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133:1162–74.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.CrossRefPubMedGoogle Scholar
  36. 36.
    Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136:2311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem. 2006;281:24090–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Ishiguro T, Sato A, Ohata H, Sakai H, Nakagama H, Okamoto K. Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun. 2011;418:199–204.CrossRefPubMedGoogle Scholar
  39. 39.
    Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem. 2009;284:26533–46.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang J, Wang X, Li M, Han J, Chen B, Wang B, et al. NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006;273:1723–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E, et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol. 2010;54:1743–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, et al. Homeodomain-DNA recognition. Cell. 1994;78:211–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Jauch R, Ng CK, Saikatendu KS, Stevens RC, Kolatkar PR. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog. J Mol Biol. 2008;376:758–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell. 1994;77:21–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Phillips K, Luisi B. The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000;302:1023–39.CrossRefPubMedGoogle Scholar
  47. 47.
    Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122:881–94.PubMedGoogle Scholar
  48. 48.
    Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome. 2001;12:309–17.CrossRefPubMedGoogle Scholar
  49. 49.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227:239–55.CrossRefPubMedGoogle Scholar
  51. 51.
    Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol. 1997;17:6321–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ambrosetti DC, Scholer HR, Dailey L, Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem. 2000;275:23387–97.CrossRefPubMedGoogle Scholar
  53. 53.
    Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008;10:353–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26:7772–82.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW, et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol. 2006;2:2006.0017.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    McBurney MW, Rogers BJ. Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol. 1982;89:503–8.CrossRefPubMedGoogle Scholar
  58. 58.
    McBurney MW. P19 embryonal carcinoma cells. Int J Dev Biol. 1993;37:135–40.PubMedGoogle Scholar
  59. 59.
    Choi SC, Choi JH, Shim WJ, Lim DS. P19 embryonal carcinoma cells: a new model for the study of endothelial cell differentiation. Biotechnol Lett. 2008;30:1169–75.CrossRefPubMedGoogle Scholar
  60. 60.
    Liour SS, Kapitonov D, Yu RK. Expression of gangliosides in neuronal development of p19 embryonal carcinoma stem cells. J Neurosci Res. 2000;62:363–73.CrossRefPubMedGoogle Scholar
  61. 61.
    Gianakopoulos PJ, Skerjanc IS. Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem. 2005;280:21022–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Bakhshalizadeh S, Esmaeili F, Houshmand F, Shirzad H, Saedi M. Effects of selegiline, a monoamine oxidase B inhibitor, on differentiation of P19 embryonal carcinoma stem cells, into neuron-like cells. In Vitro Cell Dev Biol Anim. 2011;47:550–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol. 2009;2:15.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Yang J, Gao C, Chai L, Ma Y. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One. 2010;5:e10766.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMedGoogle Scholar
  67. 67.
    Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods. 2008;18:369–78.CrossRefPubMedGoogle Scholar
  68. 68.
    Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–14.CrossRefPubMedGoogle Scholar
  69. 69.
    Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMedGoogle Scholar
  70. 70.
    Pramfalk C, Lanner J, Andersson M, Danielsson E, Kaiser C, Renstrom IM, et al. Insulin receptor activation and down-regulation by cationic lipid transfection reagents. BMC Cell Biol. 2004;5:7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest. 2000;106:1071–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lu R, Yang A, Jin Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol chem. 2011;286:8425–36.CrossRefPubMedGoogle Scholar
  73. 73.
    Hough SR, Clements I, Welch PJ, Wiederholt KA. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467–75.CrossRefPubMedGoogle Scholar
  74. 74.
    Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 2009;23:837–48.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Seyed Mohammad Ali Hosseini Rad
    • 1
  • Taravat Bamdad
    • 1
  • Majid Sadeghizadeh
    • 2
  • Ehsan Arefian
    • 3
    • 4
  • Majid Lotfinia
    • 5
    • 6
  • Milad Ghanipour
    • 7
  1. 1.Department of Virology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran
  4. 4.Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
  5. 5.Department of Stem Cells and Developmental Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  6. 6.Department of BiochemistryPasteur Institute of IranTehranIran
  7. 7.Department of Biotechnology, Brindavan CollegeBanglore UniversityBangloreIndia

Personalised recommendations