Tumor Biology

, Volume 36, Issue 4, pp 2607–2612 | Cite as

Ginsenoside Rh2 inhibits growth of glioblastoma multiforme through mTor

  • Shaoyi Li
  • Wenchang Guo
  • Yun Gao
  • Yunhui Liu
Research Article


Being the most malignant primary brain tumor in humans, glioblastoma multiforme (GBM) has a fairly poor patient survival after current combined treatment with chemotherapy, radiation, and surgery. Ginsenoside Rh2 (GRh2) has been reported to have a therapeutic effect on some tumors, and we recently reported its inhibitory effect on GBM growth in vitro and in vivo, possibly through an epidermal growth factor receptor (EGFR) signaling pathway. Here, using specific inhibitors, we found that the activation of EGFR signaling promoted GBM growth through PI3k/Akt/mTor signaling pathways. Moreover, GRh2 efficiently inhibited activation of this pathway at the receptor level. Together with our previous findings, these data suggest that GRh2 may suppress GBM growth through its competition with EGFR ligands for binding to the EGFR, and binding to EGFR by GRh2 does not lead to receptor phosphorylation. Thus, our data highlight a previous unappreciated role for GRh2 to inhibit EGFR signaling. GRh2 thus appears to be a promising therapy for cancers that require EGFR signaling to growth.


Glioblastoma multiforme (GBM) Ginsenoside Rh2 (GRh2) Epidermal growth factor receptor (EGFR) PI3k mTor 



This work was supported by the Natural Science Foundation of China (No. 30772246, No. 81072655), Liaoning Provincial Department of Education Science Research Foundation (L2010586), Liaoning Provincial Natural Science Foundation (201202286), and Shengjing Free Researcher Project (2011).

Conflicts of interest



  1. 1.
    Chen J, Huang Q, Wang F. Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Gong J, Zhu S, Zhang Y, Wang J. Interplay of VEGFa and MMP2 regulates invasion of glioblastoma. Tumour Biol. 2014. doi: 10.1007/s13277-014-2438-3.PubMedCentralGoogle Scholar
  4. 4.
    Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsatas D, Kanagasundaram V, Kaye A, Novak U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.CrossRefPubMedGoogle Scholar
  9. 9.
    Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 a/g EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human il-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro Oncol. 2010;12:815–21.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant iii supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fenton TR, Nathanson D, Ponte De Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the pten tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-suba. PLoS One. 2012;7:e52265.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMedGoogle Scholar
  18. 18.
    Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (vcam-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside rh2. Tumour Biol. 2014;35:5593–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, et al. Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant iii. Cancer Res. 2014;74:1238–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ye H, Wu Q, Zhu Y, Guo C, Zheng X. Ginsenoside rh2 alleviates dextran sulfate sodium-induced colitis via augmenting tgfbeta signaling. Mol Biol Rep. 2014;41:5485–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [inhibitory effects of oral administration of ginsenoside rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai Zasshi. 1993;45:1275–82.PubMedGoogle Scholar
  25. 25.
    Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at c-20 in antiproliferative action of ginsenoside rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside rh2 on mcf-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMedGoogle Scholar
  31. 31.
    Choi S, Kim TW, Singh SV. Ginsenoside rh2-mediated g1 phase cell cycle arrest in human breast cancer cells is caused by p15 ink4b and p27 kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
  2. 2.He UniversityShenyangChina

Personalised recommendations