Tumor Biology

, Volume 36, Issue 4, pp 2569–2581 | Cite as

High CHMP4B expression is associated with accelerated cell proliferation and resistance to doxorubicin in hepatocellular carcinoma

  • Baoying Hu
  • Dawei Jiang
  • Yuyan Chen
  • Lixian Wei
  • Shusen Zhang
  • Fengbo Zhao
  • Runzhou Ni
  • Cuihua Lu
  • Chunhua Wan
Research Article


Charged multivesicular body protein 4B (CHMP4B), a subunit of the endosomal sorting complex required for transport (ESCRT)-III complex, plays an important part in cytokinetic membrane abscission and the late stage of mitotic cell division. In this study, we explored the prognostic significance of CHMP4B in human hepatocellular carcinoma (HCC) and its impact on the physiology of HCC cells. Western blot and immunohistochemistrical analyses showed that CHMP4B was significantly upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Meanwhile, clinicopathological analysis revealed that high CHMP4B expression was correlated with multiple clinicopathological variables, including AFP, cirrhosis, AJCC stage, Ki-67 expression, and poor prognosis. More importantly, univariate and multivariate survival analyses demonstrated that CHMP4B served as an independent prognostic factor for survival of HCC patients. Using HCC cell cultures, we found that the expression of CHMP4B was progressively upregulated after the release from serum starvation. To verify whether CHMP4B could regulate the proliferation of HCC cells, CHMP4B was knocked down through the transfection of CHMP4B-siRNA oligos. Flow cytometry and CCK-8 assays indicated that interference of CHMP4B led to cell cycle arrest and proliferative impairment of HCC cells. Additionally, depletion of CHMP4B expression could increase the sensitivity to doxorubicin in HepG2 and Huh7 cells. Taken together, our results implied that CHMP4B could be a promising prognostic biomarker as well as a potential therapeutic target of HCC.


Hepatocellular carcinoma CHMP4B Cell proliferation Prognosis Doxorubicin resistance 



This study was supported, in part, by the National Natural Science Foundation of China (No. 81272708) and a grant from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 12KJB320005).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    de Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J Hepatol. 2012;56 Suppl 1:S75–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J Hepatol. 2012;56(1):267–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Worns MA, Galle PR. Future perspectives in hepatocellular carcinoma. Dig Liver Dis. 2010;42 Suppl 3:S302–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46(3):474–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Bodon G, Chassefeyre R, Pernet-Gallay K, Martinelli N, Effantin G, Hulsik DL, et al. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem. 2011;286(46):40276–86.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;23(4):452–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stuffers S, Brech A, Stenmark H. ESCRT proteins in physiology and disease. Exp Cell Res. 2009;315(9):1619–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Hanson PI, Shim S, Merrill SA. Cell biology of the ESCRT machinery. Curr Opin Cell Biol. 2009;21(4):568–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Adell MA, Teis D. Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett. 2011;585(20):3191–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III complex. Nature. 2009;458(7235):172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A. 2011;108(12):4846–51.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Morita E, Colf LA, Karren MA, Sandrin V, Rodesch CK, Sundquist WI. Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci U S A. 2010;107(29):12889–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Saksena S, Emr SD. ESCRTs and human disease. Biochem Soc Trans. 2009;37(Pt 1):167–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Lv L, Wan C, Chen B, Li M, Liu Y, Ni T, et al. Nemo-like kinase (NLK) inhibits the progression of NSCLC via negatively modulating WNT signaling pathway. J Cell Biochem. 2014;115(1):81–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Wright PK. Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Pat Anticancer Drug Discov. 2008;3(2):137–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Watanabe R, Lamb RA. Influenza virus budding does not require a functional AAA+ ATPase, VPS4. Virus Res. 2010;153(1):58–63.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baldys A, Raymond JR. Critical role of ESCRT machinery in EGFR recycling. Biochemistry. 2009;48(40):9321–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Ali N, Zhang L, Taylor S, Mironov A, Urbe S, Woodman P. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol. 2013;23(6):453–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Wright MH, Berlin I, Nash PD. Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination. Cell Biochem Biophys. 2011;60(1–2):39–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang B, Chang A, Kjeldsen TB, Arvan P. Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol. 2001;153(6):1187–98.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rusten TE, Simonsen A. ESCRT functions in autophagy and associated disease. Cell Cycle. 2008;7(9):1166–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Xu Z, Liang L, Wang H, Li T, Zhao M. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein. Biochem Biophys Res Commun. 2003;311(4):1057–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Bache KG, Slagsvold T, Stenmark H. Defective downregulation of receptor tyrosine kinases in cancer. EMBO J. 2004;23(14):2707–12.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang Y, Song M, Cui ZS, Li CY, Xue XX, Yu M, et al. Down-regulation of TSG101 by small interfering RNA inhibits the proliferation of breast cancer cells through the MAPK/ERK signal pathway. Histol Histopathol. 2011;26(1):87–94.PubMedGoogle Scholar
  28. 28.
    Jiang Y, Ou Y, Cheng X. Role of TSG101 in cancer. Front Biosci (Landmark Ed). 2013;18:279–88.CrossRefGoogle Scholar
  29. 29.
    Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, Niikawa N, et al. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007;81(3):596–606.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Renshaw MJ, Liu J, Lavoie BD, Wilde A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol. 2014;4:130190.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell. 2002;3(2):271–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther. 2000;85(3):217–29.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol. 2007;17(18):1561–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol. 2007;17(20):1817–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta. 2010;1806(2):220–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Baoying Hu
    • 1
  • Dawei Jiang
    • 2
  • Yuyan Chen
    • 3
  • Lixian Wei
    • 2
  • Shusen Zhang
    • 2
  • Fengbo Zhao
    • 1
  • Runzhou Ni
    • 2
  • Cuihua Lu
    • 2
  • Chunhua Wan
    • 4
  1. 1.Basic Medical Research Centre, Medical CollegeNantong UniversityNantongChina
  2. 2.Department of Digestion, Affiliated Hospital of Nantong UniversityNantong UniversityNantongChina
  3. 3.Class 5, Grade 13, Clinical Medicine, Medical CollegeNantong UniversityNantongChina
  4. 4.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongChina

Personalised recommendations