Tumor Biology

, Volume 36, Issue 4, pp 2501–2507 | Cite as

Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma

  • Wei-hong Shi
  • Qing-quan Wu
  • Su-qing Li
  • Tong-xin Yang
  • Zi-hao Liu
  • Yu-suo Tong
  • Lei Tuo
  • Shan Wang
  • Xiu-Feng Cao
Research Article


Recent studies reveal that long noncoding RNAs (lncRNAs) play critical regulatory roles in cancer biology. Prostate cancer-associated ncRNA transcript 1 (PCAT-1) is one of the lncRNAs involved in cell apoptosis and proliferation of prostate cancer. This study aimed to assess the potential role of PCAT-1 specifically in the pathogenesis of esophageal squamous cell carcinoma (ESCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of PCAT-1 in matched cancerous tissues and adjacent noncancerous tissues from 130 patients with ESCC, 34 patients with non-small cell lung cancer (NSCLC), and 30 patients with gastric carcinoma (GC). The correlation of PCAT-1 with clinicopathological features and prognosis were also analyzed. The expression of PCAT-1 was significantly higher in human ESCC compared with the adjacent noncancerous tissues (70.8 %, p < 0.01), and the high level of PCAT-1 expression was significantly correlated with invasion of the tumor (p = 0.024), advanced clinical stage (p = 0.003), lymph node metastasis (p = 0.032), and poor prognosis. However, PCAT-1 mRNA expression had no significant difference between paired primary cancerous tissues and the adjacent noncancerous tissues in 34 cases of NSCLC (p = 0.293) and 30 cases of GC (p = 0.125). High expression of PCAT-1 was specifically correlated with invasion of cancer tissues, metastasis of lymph node, and advanced tumor stage of ESCC. High expression of PCAT-1 might reflect poor prognosis of ESCC and indicate a potential diagnostic target in ESCC patients. Adjuvant therapy targeting PCAT-1 molecule might be effective in treatment of ESCC.


lncRNA Esophageal squamous cell carcinoma Advanced clinical stage Prognosis 



The project described was supported by the Tenth Batch Project of Six Leading Talents from Jiangsu Province in 2013 (WSN-084), the Foundation of Science and Technology Development for Nanjing City (Grant No. Ykk12087), and the Science and Technology Project on Clinical Medicine of Nanjing City (Grant No. BL2014011).

Conflicts of interest


Authors’ contributions

SWH, LSQ, WQQ, and CXF participated in the conception, design, and experiments of the study. YTX, LZH, TYS, and TR provided study materials and patients. SWH performed the data analysis and interpretation. SWH and WS wrote the manuscript. CXF and WS approved the final version. All authors read and approved the final manuscript.


  1. 1.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding rnas: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinog. 2010;31:27–36.CrossRefGoogle Scholar
  3. 3.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsai MC, Spitale RC, Chang HY. Long intergenic non-coding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Sci. 2010;329:689–93.CrossRefGoogle Scholar
  6. 6.
    Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17:556–65.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011;12:283–93.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Augoff K, McCue B, Plow EF, Sossey-Alaoui K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22:1006–14.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer. 2013;4:261–72.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu K, Li W, Liu X, Sun M, Zhang M, Wu W, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nat. 2011;477:295–300.CrossRefGoogle Scholar
  16. 16.
    Lee JT. The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol. 2010;2(9):a003749.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145:178–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29:742–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29:1810–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30:4750–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ding C, Cheng S, Yang Z, Lv Z, Xiao H, Du C, et al. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int J Mol Sci. 2014;15:4060–76.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang JF, Guo YJ, Zhao CX, Yuan SX, Wang Y, Tang GN, et al. Hepatitis B virus X protein (HBx)-related long noncoding rna (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatol. 2013;57:1882–92.CrossRefGoogle Scholar
  23. 23.
    Wang CM, Wu QQ, Li SQ, Chen FJ, Tuo L, Xie HW, et al. Upregulation of the long non-coding RNA PlncRNA-1 promotes esophageal squamous carcinoma cell proliferation and correlates with advanced clinical stage. Dig Dis Sci. 2014;59:591–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Xie HW, Wu QQ, Zhu B, Chen FJ, Ji L, Li SQ, et al. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol. 2014;35(8):7743–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing identifies PCAT-1, a novel lincRNA implicated in prostate cancer progression. Nat Biotechnol. 2011;29:742–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Derrien T, Guigo R, Johnson R. The long non-coding RNAs: a new (p)layer in the “dark matter”. Front Genet. 2011;2:107.PubMedGoogle Scholar
  27. 27.
    Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 2007;14:103–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31:4577–87.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651–60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013;30:588.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Wei-hong Shi
    • 1
    • 2
  • Qing-quan Wu
    • 4
  • Su-qing Li
    • 1
  • Tong-xin Yang
    • 1
  • Zi-hao Liu
    • 1
  • Yu-suo Tong
    • 1
  • Lei Tuo
    • 1
  • Shan Wang
    • 3
    • 5
  • Xiu-Feng Cao
    • 1
  1. 1.Department of Surgical OncologyAffiliated Nanjing Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of Medical TechnologyYancheng Health Vocational and Technical CollegeYanchengChina
  3. 3.Yancheng Second HospitalYanchengChina
  4. 4.Huaian First HospitalNanjing Medical UniversityHuaianChina
  5. 5.Department of Surgical OncologyYancheng Second HospitalYanchengChina

Personalised recommendations