Tumor Biology

, Volume 36, Issue 4, pp 2481–2490 | Cite as

MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2

  • Zhong-Liang Ma
  • Pin-Pin Hou
  • Yan-Li Li
  • De-Tao Wang
  • Tian-Wei Yuan
  • Jia-Li Wei
  • Bo-Tao Zhao
  • Jia-Tao Lou
  • Xin-Tai Zhao
  • Yan Jin
  • You-Xin Jin
Research Article


MicroRNAs (MiRNAs) are small non-coding RNA molecules which act as important regulators of post-transcriptional gene expression by binding 3′-untranslated region (3′-UTR) of target messenger RNA (mRNA). In this study, we analyzed miRNA-34a (miR-34a) as a tumor suppressor in non-small cell lung cancer (NSCLC) H1299 cell line. The expression level of miR-34a in four different NSCLC cell lines, H1299, A549, SPCA-1, and HCC827, was significantly lower than that in the non-tumorigenic bronchial epithelium cell line BEAS-2B. In human NSCLC tissues, miR-34a expression level was also significantly decreased in pT2-4 compared with the pT1 group. Moreover, miR-34a mimic could inhibit the proliferation and triggered apoptosis in H1299 cells. Luciferase assays revealed that miR-34a inhibited TGFβR2 expression by targeting one binding site in the 3′-UTR of TGFβR2 mRNA. Quantitative real-time PCR (qRT-PCR) and Western blot assays verified that miR-34a reduced TGFβR2 expression at both mRNA and protein levels. Furthermore, downregulation of TGFβR2 by siRNA showed the same effects on the proliferation and apoptosis as miR-34a mimic in H1299 cells. Our results demonstrated that miR-34a could inhibit the proliferation and promote the apoptosis of H1299 cells partially through the downregulation of its target gene TGFβR2.


miR-34a Non-small cell lung cancer Proliferation Apoptosis TGFβR2 



American Type Culture Collection


Cell Counting Kit-8


Dulbecco’s modified Eagle’s medium


Fetal bovine serum


Fluorescein isothiocyanate


Mothers against decapentaplegic






miRNA negative control


Non-small cell lung cancer


Polymerase chain reaction


Quantitative real-time PCR


Small cell lung cancer


Sodium dodecyl sulfate polyacryl-amide gel electrophoresis


Transforming growth factor beta receptor II


3′-untranslated region



This work was supported in part by grants from the National Natural Science Foundation of China (31170750, 31100570), the National Basic Research Program of China (2011CBA01105), and Shanghai Municipal Commission of Economy and Information (11CH-08) and a foundation from state key laboratory of molecular biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Life Sciences, Chinese Academy of Sciences.

Supplementary material

13277_2014_2861_Fig7_ESM.gif (17 kb)
Fig. S1

MiR-34a level was increased or decreased in H1299 cells transfected with miR-34a mimic and pcDNA3.1-miR-34a or miR-34a inhibitor. a MiR-34a mimic transfection could significantly increase miR-34a level, while miR-34a inhibitor transfection significantly decreased miR-34a level in H1299 cells. b MiR-34a expression level was assayed after transfection with pcDNA3.1 and pcDNA3.1-miR-34a in H1299 cells. Data were performed through qRT-PCR. U6 was used as an internal control. Each assay was performed in triplicate. *** P < 0.001 (GIF 16 kb)

13277_2014_2861_MOESM1_ESM.tif (1.3 mb)
High resolution image (TIFF 1284 kb)
13277_2014_2861_Fig8_ESM.gif (56 kb)
Fig. S2

Six target genes of miR-34a were verified by the luciferase assay. * P < 0.05, ** P < 0.01 and *** P < 0.001 (GIF 56 kb)

13277_2014_2861_MOESM2_ESM.tif (3.2 mb)
High resolution image (TIFF 3292 kb)
13277_2014_2861_MOESM3_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107.Google Scholar
  2. 2.
    Marchevsky AM, Gal AA, Shah S, Koss MN. Morphometry confirms the presence of considerable nuclear size overlap between “small cells” and “large cells” in high-grade pulmonary neuroendocrine neoplasms. Am J Clin Pathol. 2001;116:466–72. doi: 10.1309/H40B-8W14-4Q47-03EP.CrossRefPubMedGoogle Scholar
  3. 3.
    Fassina A, Cappellesso R, Fassan M. Classification of non-small cell lung carcinoma in transthoracic needle specimens using microrna expression profiling. Chest. 2011;140:1305–11. doi: 10.1378/chest. 11-0708.CrossRefPubMedGoogle Scholar
  4. 4.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34. doi: 10.1038/ncb0309-228.CrossRefPubMedGoogle Scholar
  5. 5.
    Peter ME. Let-7 and mir-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009;8:843–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hu J, Xu J, Wu Y, Chen Q, Zheng W, Lu X, et al. Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumour Biol: J Int Soc Oncodevelop Biol Med. 2014. doi: 10.1007/s13277-014-2611-8.Google Scholar
  7. 7.
    Tiwari A, Shivananda S, Gopinath KS, Kumar A. MicroRNA-125a reduces proliferation and invasion of oral squamous cell carcinoma cells by targeting estrogen-related receptor alpha: implications for cancer therapeutics. J Biol Chem. 2014. doi: 10.1074/jbc.M114.584136.Google Scholar
  8. 8.
    Gade S, Porzelius C, Falth M, Brase JC, Wuttig D, Kuner R, et al. Graph based fusion of miRNA and mRNA expression data improves clinical outcome prediction in prostate cancer. BMC Bioinforma. 2011;12:488. doi: 10.1186/1471-2105-12-488.CrossRefGoogle Scholar
  9. 9.
    Silber J, James CD, Hodgson JG. MicroRNAs in gliomas: small regulators of a big problem. Neruomol Med. 2009;11:208–22. doi: 10.1007/s12017-009-8087-9.CrossRefGoogle Scholar
  10. 10.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004. doi: 10.1073/pnas.0307323101.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leman ES, Magheli A, Yong KM, Netto G, Hinz S, Getzenberg RH. Identification of nuclear structural protein alterations associated with seminomas. J Cell Biochem. 2009;108:1274–9. doi: 10.1002/jcb.22357.CrossRefPubMedGoogle Scholar
  12. 12.
    Debey-Pascher S, Chen J, Voss T, Staratschek-Jox A. Blood-based mirna preparation for noninvasive biomarker development. Methods Mol Biol. 2012;822:307–38. doi: 10.1007/978-1-61779-427-8_22.CrossRefPubMedGoogle Scholar
  13. 13.
    D’Haene B, Mestdagh P, Hellemans J, Vandesompele J. MiRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol. 2012;822:261–72. doi: 10.1007/978-1-61779-427-8_18.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen J, April CS, Fan JB. Mirna expression profiling using illumina universal beadchips. Methods Mol Biol. 2012;822:103–16. doi: 10.1007/978-1-61779-427-8_7.CrossRefPubMedGoogle Scholar
  15. 15.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4. doi: 10.1038/nature05939.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of mir-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52. doi: 10.1016/j.molcel.2007.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of mir-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43. doi: 10.1016/j.molcel.2007.05.017.CrossRefPubMedGoogle Scholar
  18. 18.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol: CB. 2007;17:1298–307. doi: 10.1016/j.cub.2007.06.068.CrossRefPubMedGoogle Scholar
  19. 19.
    Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37. doi: 10.1038/nrc2730.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang DT, Ma ZL, Li YL, Wang YQ, Zhao BT, Wei JL, et al. Mir-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol Rep. 2013;30:492–8. doi: 10.3892/or.2013.2453.PubMedGoogle Scholar
  21. 21.
    Schultz N, Marenstein DR, De Angelis DA, Wang WQ, Nelander S, Jacobsen A, et al. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-beta pathway and reveal microRNA regulation of TGFβR2. Silence. 2011;2:3. doi: 10.1186/1758-907X-2-3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta—an excellent servant but a bad master. J Transl Med. 2012;10:183. doi: 10.1186/1479-5876-10-183.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29. doi: 10.1038/ng1001-117.CrossRefPubMedGoogle Scholar
  24. 24.
    Massague J. TGFbeta in cancer. Cell. 2008;134:215–30. doi: 10.1016/j.cell.2008.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang HT, Chen XF, Wang MH, Wang JC, Qi QY, Zhang RM, et al. Defective expression of transforming growth factor beta receptor type II is associated with cpg methylated promoter in primary non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10:2359–67.CrossRefGoogle Scholar
  26. 26.
    Xu CC, Wu LM, Sun W, Zhang N, Chen WS, Fu XN. Effects of TGF-beta signaling blockade on human a549 lung adenocarcinoma cell lines. Mol Med Rep. 2011;4:1007–15. doi: 10.3892/mmr.2011.530.PubMedGoogle Scholar
  27. 27.
    Zhang JX, Han L, Bao ZS, Wang YY, Chen LY, Yan W, et al. Hotair, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro-Oncology. 2013;15:1595–603. doi: 10.1093/neuonc/not131.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE, et al. Let-7a regulation of insulin-like growth factors in breast cancer. Breast Cancer Res Treat. 2011;126:687–94. doi: 10.1007/s10549-010-1168-5.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res. 2007;67:10117–22. doi: 10.1158/0008-5472.CAN-07-2544.CrossRefPubMedGoogle Scholar
  30. 30.
    Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, et al. Frequent concomitant inactivation of mir-34a and mir-34b/c by cpg methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv: Int J Pathol. 2011;458:313–22. doi: 10.1007/s00428-010-1030-5.CrossRefGoogle Scholar
  31. 31.
    Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol. 2012;26:79–86. doi: 10.1002/jbt.20412.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting fra-1. Oncogene. 2013;32:4294–303. doi: 10.1038/onc.2012.432.CrossRefPubMedGoogle Scholar
  33. 33.
    Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7:e33778. doi: 10.1371/journal.pone.0033778.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–30. doi: 10.1158/0008-5472.CAN-10-0655.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bandi N, Vassella E. Mir-34a and mir-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and rb-dependent manner. Mol Cancer. 2011;10:55. doi: 10.1186/1476-4598-10-55.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shi Y, Liu C, Liu X, Tang DG, Wang J. The microRNA mir-34a inhibits non-small cell lung cancer (NSCLC) growth and the cd44hi stem-like NSCLC cells. PLoS One. 2014;9:e90022. doi: 10.1371/journal.pone.0090022.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69:7569–76. doi: 10.1158/0008-5472.CAN-09-0529.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, et al. The mycn oncogene is a direct target of mir-34a. Oncogene. 2008;27:5204–13. doi: 10.1038/onc.2008.154.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Welch C, Chen Y, Stallings RL. Microrna-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22. doi: 10.1038/sj.onc.1210293.CrossRefPubMedGoogle Scholar
  40. 40.
    Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of ccnd1 and cdk6 by mir-34a induces cell cycle arrest. FEBS Lett. 2008;582:1564–8. doi: 10.1016/j.febslet.2008.03.057.CrossRefPubMedGoogle Scholar
  41. 41.
    Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer. 2011;11:33. doi: 10.1186/1471-2407-11-33.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, et al. Restoration of tumor suppressor mir-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:266. doi: 10.1186/1471-2407-8-266.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of mir-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6:e24099. doi: 10.1371/journal.pone.0024099.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, et al. A small-molecule modulator of the tumor-suppressor mir34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 2014;74:6236–47. doi: 10.1158/0008-5472.CAN-14-0855.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Zhong-Liang Ma
    • 1
  • Pin-Pin Hou
    • 1
  • Yan-Li Li
    • 1
  • De-Tao Wang
    • 1
  • Tian-Wei Yuan
    • 1
  • Jia-Li Wei
    • 1
  • Bo-Tao Zhao
    • 1
  • Jia-Tao Lou
    • 3
  • Xin-Tai Zhao
    • 4
  • Yan Jin
    • 2
  • You-Xin Jin
    • 1
  1. 1.School of Life SciencesShanghai UniversityShanghaiChina
  2. 2.Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced Technology Chinese Academy of SciencesShenzhenChina
  3. 3.Department of Laboratory MedicineShanghai Chest Hospital affiliated to Shanghai Jiaotong UniversityShanghaiChina
  4. 4.Shanghai Shines Pharmaceuticals Co., Ltd.ShanghaiChina

Personalised recommendations