Advertisement

Tumor Biology

, Volume 36, Issue 4, pp 2427–2435 | Cite as

Individualized chemotherapy for osteosarcoma and identification of gene mutations in osteosarcoma

  • Xin Xiao
  • Wei Wang
  • Haoqiang Zhang
  • Peng Gao
  • Bo Fan
  • Chen Huang
  • Jun Fu
  • Guojing Chen
  • Lei Shi
  • Haodong Zhu
  • Xiangdong Li
  • Jing Li
  • Hongbin Fan
  • Zhigang Wu
  • Zheng Guo
  • Yongcheng Hu
  • Sujia Wu
  • Xiuchun Yu
  • Cheng Xu
  • Zhen Wang
Research Article

Abstract

The study aims to identify novel gene mutations in osteosarcoma and to guide individualized preoperative chemotherapy for osteosarcoma based on the analysis of expression and mutations of the drug-metabolism-related genes. Twenty-eight osteosarcoma patients received individualized preoperative chemotherapy regimens. Expression levels and mutations of chemotherapy-related genes in samples collected from the patients were determined using real-time PCR and DNA sequencing, respectively. Patient sensitivity to chemotherapeutic agents was evaluated by systematic analysis of the PCR and sequencing results. Novel mutations were identified via high-throughput sequencing of 339 genes in 10 osteosarcoma samples. Individualized preoperative chemotherapy outcomes were valid for nine patients (n = 9/28, 32.1 %). Chemosensitivity assays showed that all 28 patients were sensitive to ifosfamide, whereas 46.4 and 39.2 % were sensitive to docetaxel and platinum, respectively. More importantly, patients receiving highly chemosensitive chemotherapy agents had better prognosis and treatment outcomes than those receiving less chemosensitive agents (P < 0.05). In addition, 39 gene mutations were detected in at least five osteosarcoma tumor samples. Analysis of the expression and mutation of drug-metabolism-related genes will aid in the design of effective individualized preoperative chemotherapy regimens for osteosarcoma. Determining the chemosensitivity of individual tumors to chemotherapeutic agents will facilitate the development of better therapeutic approaches. Individualized treatment of osteosarcoma may improve chemotherapy efficacy and the survival rate of osteosarcoma patients. High-throughput genotyping allows mapping of osteosarcoma mutations, and novel gene mutations offered new candidates for diagnosis and therapeutic targeting.

Keywords

Osteosarcoma Gene mutation High-throughput sequencing Individualized treatment 

Notes

Acknowledgments

This study was supported by Natural Science Foundation of China (No. 31170914).

Conflicts of interest

None

Supplementary material

13277_2014_2853_MOESM1_ESM.doc (308 kb)
ESM 1 (DOC 307 kb)

References

  1. 1.
    Lamoureux F, Trichet V, Chipoy C, Blanchard F, Gouin F, Redini F. Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies. Expert Rev Anticancer Ther. 2007;7:169–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, et al. Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the children’s oncology group. J Clin Oncol : Off J Am Soc Clin Oncol. 2008;26:633–8.CrossRefGoogle Scholar
  3. 3.
    Longhi A, Ferrari S, Bacci G, Specchia S. Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anti-Cancer Drugs. 2007;18:737–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Turner NC, Reis-Filho JS. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012;13:e178–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Isfort RJ, Cody DB, Lovell G, Doersen CJ. Analysis of oncogenes, tumor suppressor genes, autocrine growth-factor production, and differentiation state of human osteosarcoma cell lines. Mol Carcinog. 1995;14:170–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Gvozdenovic A, Arlt MJ, Campanile C, Brennecke P, Husmann K, Li Y, et al. Cd44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Mineral Res : Off J Am Soc Bone Mineral Res. 2013;28:838–47.CrossRefGoogle Scholar
  12. 12.
    Tanaka T, Yui Y, Naka N, Wakamatsu T, Yoshioka K, Araki N, et al. Dynamic analysis of lung metastasis by mouse osteosarcoma lm8: Vegf is a candidate for anti-metastasis therapy. Clin Exp Metastasis. 2013;30:369–79.CrossRefPubMedGoogle Scholar
  13. 13.
    Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone sarcoma defined by bcor-ccnb3 gene fusion. Nat Genet. 2012;44:461–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Choy E, Hornicek F, MacConaill L, Harmon D, Tariq Z, Garraway L, et al. High-throughput genotyping in osteosarcoma identifies multiple mutations in phosphoinositide-3-kinase and other oncogenes. Cancer. 2012;118:2905–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, et al. The pharmacogenetics research network: From snp discovery to clinical drug response. Clin Pharmacol Ther. 2007;81:328–45.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thorn CF, Klein TE, Altman RB. Pharmgkb: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol. 2005;311:179–91.PubMedGoogle Scholar
  17. 17.
    Kawashima A, Takayama H, Kawamura N, Doi N, Sato M, Hatano K, et al. Co-expression of ercc1 and snail is a prognostic but not predictive factor of cisplatin-based neoadjuvant chemotherapy for bladder cancer. Oncol Lett. 2012;4:15–21.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Blazquez A, Mas S, Plana MT, Lafuente A, Lazaro L. Fluoxetine pharmacogenetics in child and adult populations. Eur Child Adolesc Psychiatry. 2012;21:599–610.CrossRefPubMedGoogle Scholar
  19. 19.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Kuijjer ML, Rydbeck H, Kresse SH, Buddingh EP, Lid AB, Roelofs H, et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Gene Chromosome Cancer. 2012;51:696–706.CrossRefGoogle Scholar
  21. 21.
    Kudawara I, Aoki Y, Ueda T, Araki N, Naka N, Nakanishi H, et al. Neoadjuvant and adjuvant chemotherapy with high-dose ifosfamide, doxorubicin, cisplatin and high-dose methotrexate in non-metastatic osteosarcoma of the extremities: a phase II trial in japan. J Chemother. 2013;25:41–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bajpai J, Puri A, Shah K, Susan D, Jambhekar N, Rekhi B, et al. Chemotherapy compliance in patients with osteosarcoma. Pediatr Blood Cancer. 2013;60:41–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Y, Yang Y, Yuan Z, Wang C, Shi Y. Predicting chemosensitivity in osteosarcoma prior to chemotherapy: an investigational study of biomarkers with immunohistochemistry. Oncol Lett. 2012;3:1011–6.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang C, Zhao Y, Zeng B. Enhanced chemosensitivity by simultaneously inhibiting cell cycle progression and promoting apoptosis of drug-resistant osteosarcoma mg63/dxr cells by targeting cyclin d1 and bcl-2. Cancer Biomarkers : Sect A Dis Mark. 2012;12:155–67.CrossRefGoogle Scholar
  25. 25.
    Liu C, Dai G, Zhang X. Chemosensitivity test for human osteosarcoma cells. Zhonghua zhong liu za zhi Chinese J Oncol. 1996;18:445–7.Google Scholar
  26. 26.
    Tomita K, Tsuchiya H, Nomura S. Overall results of adjuvant chemotherapy and a chemosensitivity test for osteosarcoma. Clin Ther. 1989;11:135–42.PubMedGoogle Scholar
  27. 27.
    Tomita K, Yokogawa A. Chemosensitivity testing with tumor colony-forming assay for human osteosarcoma. Jpn J Antibiot. 1986;39:1228–33.PubMedGoogle Scholar
  28. 28.
    Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, et al. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer. 2004;4:45.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lau CC, Harris CP, Lu XY, Perlaky L, Gogineni S, Chintagumpala M, et al. Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Gene Chromosom Cancer. 2004;39:11–21.CrossRefGoogle Scholar
  30. 30.
    Owen RP, Klein TE, Altman RB. The education potential of the pharmacogenetics and pharmacogenomics knowledge base (pharmgkb). Clin Pharmacol Ther. 2007;82:472–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Geller DS, Gorlick R. Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol : H&O. 2010;8:705–18.Google Scholar
  32. 32.
    Gorlick R. Osteosarcoma: clinical practice and the expanding role of biology. J Musculoskelet Neuronal Interact. 2002;2:549–51.PubMedGoogle Scholar
  33. 33.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Timar J. The clinical relevance of kras gene mutation in non-small-cell lung cancer. Curr Opin Oncol. 2014;26:138–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Zheng S, Chen LR, Wang HJ, Chen SZ. Analysis of mutation and expression of c-kit and pdgfr-alpha gene in gastrointestinal stromal tumor. Hepato-Gastroenterology. 2007;54:2285–90.PubMedGoogle Scholar
  36. 36.
    Kim HL, Cassone M, Otvos Jr L, Vogiatzi P. Hif-1alpha and stat3 client proteins interacting with the cancer chaperone hsp90: therapeutic considerations. Cancer Biol Ther. 2008;7:10–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Sims JD, McCready J, Jay DG. Extracellular heat shock protein (hsp)70 and hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS ONE. 2011;6:e18848.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Xin Xiao
    • 1
  • Wei Wang
    • 2
  • Haoqiang Zhang
    • 1
  • Peng Gao
    • 1
  • Bo Fan
    • 1
  • Chen Huang
    • 1
  • Jun Fu
    • 1
  • Guojing Chen
    • 1
  • Lei Shi
    • 1
  • Haodong Zhu
    • 1
  • Xiangdong Li
    • 1
  • Jing Li
    • 1
  • Hongbin Fan
    • 1
  • Zhigang Wu
    • 1
  • Zheng Guo
    • 1
  • Yongcheng Hu
    • 3
  • Sujia Wu
    • 4
  • Xiuchun Yu
    • 5
  • Cheng Xu
    • 6
  • Zhen Wang
    • 1
  1. 1.Department of Orthopedics, Xijing HospitalForth Military Medical UniversityXi’anChina
  2. 2.The State Key Laboratory of Cancer Biology, Department of ImmunologyForth Military Medical UniversityXi’anChina
  3. 3.Department of Bone TumorTianjin HospitalTianjinChina
  4. 4.Department of OrthopaedicsGeneral Hospital of Nanjing Region, PLANanjingChina
  5. 5.Department of OrthopaedicsGeneral Hospital of Jinan Military RegionJinanChina
  6. 6.Shanghai Biotecan Diagnostics Co., Ltd.ShanghaiChina

Personalised recommendations