Tumor Biology

, Volume 36, Issue 1, pp 33–39 | Cite as

Checkpoint inhibitors in immunotherapy of ovarian cancer

  • Dong-hui Wang
  • Liang Guo
  • Xiao-hua Wu


The treatment of ovarian cancer is a major challenge in oncology as mortality from ovarian cancer remains very high. The immune system plays a critical role in controlling cancer through a dynamic relationship with cancer cells. Immunotherapy can establish a sustained immune system response against recurring cancer cells leading to long-term remissions for ovarian cancer patient. The use of immune checkpoint inhibitors, which work by targeting molecules that serve as checks and balances in the regulation of immune responses, might be a promising avenue of immunotherapeutic research in ovarian cancer. In this review, we have focused on the potential of certain immune checkpoint inhibitors, such as anti-cytotoxic T lymphocyte antigens, anti-programmed death agents, and anti-program death ligands against ovarian cancer, with their mechanism of actions. Also, the problems arising due to checkpoint inhibitor immunotherapy have been discussed in this review. Checkpoint inhibitor immunotherapy is still in early-phase testing for ovarian cancer. Understanding the pivotal role of the tumor microenvironment in suppressing anticancer immunity, the unique adverse effects profiles of these agents, and the exploration of combinatorial treatment regimens will ultimately lead to enhance the efficacy of ovarian cancer immunotherapies and improved patient care.


Ovarian cancer Immune system Anti-cytotoxic T lymphocyte antigens Anti-programmed death agents Anti-programmed death ligands 


Conflicts of interest



  1. 1.
    Tania M, Khan MA, Song Y. Association of lipid metabolism with ovarian cancer. Curr Oncol. 2010;17:6–11.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Vargas-Hernández VM, Moreno-Eutimio MA, Acosta-Altamirano G, Vargas-Aguilar VM. Management of recurrent epithelial ovarian cancer. Gland Surg. 2014;3:198–202.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Goff BA, Mandel L, Muntz HG, Melancon CH. Ovarian carcinoma diagnosis. Cancer. 2000;89:2068–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. Tumour Biol. 2014;35:9523–30.Google Scholar
  5. 5.
    Morgan Jr RJ, Alvarez RD, Armstrong DK, Boston B, Burger RA, Chen LM, et al. Epithelial ovarian cancer. J Natl Compr Canc Netw. 2011;9:82–113.PubMedGoogle Scholar
  6. 6.
    Muccioli M, Benencia F. Toll-like receptors in ovarian cancer as targets for immunotherapies. Front Immunol. 2014;5:341.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Garces AH, Dias MS, Paulino E, Ferreira CG, de Melo AC. Treatment of ovarian cancer beyond chemotherapy: are we hitting the target? Cancer Chemother Pharmacol. 2014 Sep 12. [Epub ahead of print]Google Scholar
  8. 8.
    Lizotte PH, Baird JR, Stevens CA, Lauer P, Green WR, Brockstedt DG, et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology. 2014;3:e28926.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shore ND. Advances in the understanding of cancer immunotherapy. BJU Int. 2014 Feb 25. [Epub ahead of print]Google Scholar
  10. 10.
    Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94:41–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bilusic M, Heery C, Madan RA. Immunotherapy in prostate cancer: emerging strategies against a formidable foe. Vaccine. 2011;29:6485–97.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ito F, Chang AE. Cancer immunotherapy: current status and future directions. Surg Oncol Clin N Am. 2013;22:765–83.CrossRefPubMedGoogle Scholar
  13. 13.
    Hao MZ, Zhou WY, Du XL, Chen KX, Wang GW, Yang Y, et al. Novel anti-melanoma treatment: focus on immunotherapy. Chin J Cancer. 2014;33:458–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res. 1995;1:501–7.PubMedGoogle Scholar
  15. 15.
    Manjunath SR, Ramanan G, Dedeepiya VD, Terunuma H, Deng X, Baskar S, et al. Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Rep Oncol. 2012;5:114–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tse BW, Collins A, Oehler MK, Zippelius A, Heinzelmann-Schwarz VA. Antibody-based immunotherapy for ovarian cancer: where are we at? Ann Oncol. 2014;25:322–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94:25–39.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mocellin S, Benna C, Pilati P. Coinhibitory molecules in cancer biology and therapy. Cytokine Growth Factor Rev. 2013;24:147–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brahmer JR, Pardoll DM. Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res. 2013;1:85–91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bailey A, McDermott DF. Immune checkpoint inhibitors as novel targets for renal cell carcinoma therapeutics. Cancer J. 2013;19:348–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Yano H, Thakur A, Tomaszewski EN, Choi M, Deol A, Lum LG. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. J Transl Med. 2014;12:191.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Blank CU, Enk A. Therapeutic use of anti-CTLA-4 antibodies. Int Immunol. 2014 Jul 18. [Epub ahead of print]Google Scholar
  26. 26.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014;588:368–76.CrossRefPubMedGoogle Scholar
  28. 28.
    Blank CU. The perspective of immunotherapy: new molecules and new mechanisms of action in immune modulation. Curr Opin Oncol. 2014;26:204–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Robert C, Schadendorf D, Messina M, Hodi FS, O’Day S, MDX010-20 investigators. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res. 2013;19:2232–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Reuben JM, Lee BN, Li C, Gomez-Navarro J, Bozon VA, Parker CA, et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006;106:2437–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31:616–22.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Millward M, Underhill C, Lobb S, McBurnie J, Meech SJ, Gomez-Navarro J, et al. Phase I study of tremelimumab (CP-675 206) plus PF-3512676 (CPG 7909) in patients with melanoma or advanced solid tumours. Br J Cancer. 2013;108:1998–2004.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang YF, Zou JP, Mu J, Wijesuriya R, Ono S, Walunas T, et al. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 1997;57:4036–41.PubMedGoogle Scholar
  34. 34.
    Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105:3005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100:4712–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153:145–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Sznol M. Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy. Cancer J. 2014;20:290–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Naidoo J, Page DB, Wolchok JD. Immune checkpoint blockade. Hematol Oncol Clin North Am. 2014;28:585–600.CrossRefPubMedGoogle Scholar
  39. 39.
    Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31:4311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15:69–77.CrossRefPubMedGoogle Scholar
  42. 42.
    Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14:3044–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomized dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.CrossRefPubMedGoogle Scholar
  45. 45.
    Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011;186:6905–13.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS ONE. 2014;9:e89350.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wei H, Zhao L, Li W, Fan K, Qian W, Hou S, et al. Combinatorial PD-1 blockade and CD137 activation has therapeutic efficacy in murine cancer models and synergizes with cisplatin. PLoS ONE. 2013;8:e84927.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med. 2014;12:36.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dolan DE, Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21:231–7.PubMedGoogle Scholar
  51. 51.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sharon E, Streicher H, Goncalves P, Chen HX. Immune checkpoints in cancer clinical trials. Chin J Cancer. 2014;33:434–44.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res. 2013;19:1363–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104:3360–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kong YC, Wei WZ, Tomer Y. Opportunistic autoimmune disorders: from immunotherapy to immune dysregulation. Ann N Y Acad Sci. 2010;1183:222–36.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.First Department of GynecologyCangzhou Central HospitalCangzhouChina
  2. 2.Department of GynecologyBethune International Peace HospitalShijiazhuangChina

Personalised recommendations