Advertisement

Tumor Biology

, Volume 36, Issue 4, pp 2359–2368 | Cite as

Clinicopathological and cellular signature of PAK1 in human bladder cancer

  • Kai Huang
  • Gang Chen
  • Jingfang Luo
  • Youyuan Zhang
  • Guoxiong Xu
Research Article

Abstract

Bladder cancer (BC) is the ninth most common cancer and the 13th most common cause of cancer death. Although p21 protein-activated kinase (PAK) regulates cell growth, motility, and morphology, the expression and function of PAK1 associated with the clinicopathological and cellular signature of human BC are not clear. This study was to examine the expression of PAK1 in human BC, the association of PAK1 with clinicopathological features, and the effect of PAK1 on cell proliferation, migration, and invasion in BC cells. A total of 54 BC and 12 normal bladder tissue specimens were retrieved. Among 54 BC patients, 39 cases were superficial BC and 15 cases were invasive BC. Histological examination revealed 29 patients with low-grade and 25 patients with high-grade papillary urothelial carcinomas. Immunohistochemical staining showed that PAK1 was overexpressed in BC tissue compared with normal bladder tissue. The overexpression of PAK1 was significantly associated with tumor size, histological grade, and lymph node metastasis, but not with gender, age, clinical stage, tumor number, and recurrence. Furthermore, the cytoplasmic distribution of PAK1 was observed in BC cells. Knocking down of PAK1 using lentiviral transduction decreased BC cell proliferation, migration, and invasion. In conclusion, we demonstrated that the overexpression of PAK1 is closely associated with the clinicopathological features of BC, suggesting that PAK1 may play an important role in the development and progression of BC and may be a potential therapeutic target for the treatment of BC.

Keywords

PAK1 Metastasis Proliferation Migration Invasion Tumor progression 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81272880) to GX and the Shanghai Committee of Science and Technology (124119a3302) to GC.

Conflicts of interest

None

References

  1. 1.
    Sauter G, Amin MB, Kogevinas M, Simon R. Bladder cancer. In: Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 632–44.Google Scholar
  2. 2.
    Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Di Stasi SM, Valenti M, Verri C, Liberati E, Giurioli A, Leprini G, et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 2011;12(9):871–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–5. discussion 75–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMedGoogle Scholar
  6. 6.
    DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, et al. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One. 2012;7(5):e36669.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    King H, Nicholas NS, Wells CM. Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol. 2014;309:347–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Eswaran J, Li DQ, Shah A, Kumar R. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer—opportunities, challenges, and limitations. Clin Cancer Res. 2012;18(14):3743–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Minden A. PAK4-6 in cancer and neuronal development. Cell Logist. 2012;2(2):95–104.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14(1):13–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2(2):105–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72(22):5966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dammann K, Khare V, Gasche C. Tracing PAKs from GI inflammation to cancer. Gut. 2014;63(7):1173–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Ye DZ, Jin S, Zhuo Y, Field J. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One. 2011;6(11):e27637.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, et al. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor beta expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem. 2013;288(5):3025–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu G, Barrios-Rodiles M, Jerkic M, Turinsky AL, Nadon R, Vera S, et al. Novel protein interactions with endoglin and activin receptor-like kinase 1: potential role in vascular networks. Mol Cell Proteomics. 2014;13(2):489–502.CrossRefPubMedGoogle Scholar
  18. 18.
    Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994;367(6458):40–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, et al. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol. 2014;32:846–854Google Scholar
  20. 20.
    Ong CC, Jubb AM, Zhou W, Haverty PM, Harris AL, Belvin M, et al. p21-activated kinase 1: PAK’ed with potential. Oncotarget. 2011;2(6):491–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nikolic M. The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol. 2008;37(2–3):187–202.CrossRefPubMedGoogle Scholar
  22. 22.
    Rayala SK, Molli PR, Kumar R. Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res. 2006;66(12):5985–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Kamai T, Shirataki H, Nakanishi K, Furuya N, Kambara T, Abe H, et al. Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer. 2010;10:164.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li LH, Luo Q, Zheng MH, Pan C, Wu GY, Lu YZ, et al. P21-activated protein kinase 1 is overexpressed in gastric cancer and induces cancer metastasis. Oncol Rep. 2012;27(5):1435–42.PubMedGoogle Scholar
  25. 25.
    Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, Tam KF, et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer. 2010;127(1):21–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Siu MK, Yeung MC, Zhang H, Kong DS, Ho JW, Ngan HY, et al. p21-Activated kinase-1 promotes aggressive phenotype, cell proliferation, and invasion in gestational trophoblastic disease. Am J Pathol. 2010;176(6):3015–22.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ito M, Nishiyama H, Kawanishi H, Matsui S, Guilford P, Reeve A, et al. P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol. 2007;178(3 Pt 1):1073–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Redelman-Sidi G, Iyer G, Solit DB, Glickman MS. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 2013;73(3):1156–67.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang X, Gui L, Zhang Y, Zhang J, Shi J, Xu G. Cystatin B is a progression marker of human epithelial ovarian tumors mediated by the TGF-beta signaling pathway. Int J Oncol. 2014;44(4):1099–106.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC, Desai R, et al. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J Pathol. 2014. doi: 10.1002/path.4412.PubMedCentralGoogle Scholar
  31. 31.
    Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2011;108(17):7177–82.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qing H, Gong W, Che Y, Wang X, Peng L, Liang Y, et al. PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Tumour Biol. 2012;33(4):985–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu W, Qu JJ, Li BL, Lu C, Yan Q, Wu XM, et al. Overexpression of p21-activated kinase 1 promotes endometrial cancer progression. Oncol Rep. 2013;29(4):1547–55.PubMedGoogle Scholar
  34. 34.
    Park J, Kim JM, Park JK, Huang S, Kwak SY, Ryu KA, et al. Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis of head and neck cancer. Head Neck. 2014.Google Scholar
  35. 35.
    Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31(29):3397–408.CrossRefPubMedGoogle Scholar
  36. 36.
    McCarty SK, Saji M, Zhang X, Jarjoura D, Fusco A, Vasko VV, et al. Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr-Relat Cancer. 2010;17(4):989–99.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, et al. p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem. 2013;288(27):20093–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Orr AW, Hahn C, Blackman BR, Schwartz MA. p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res. 2008;103(6):671–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee SH, Jung YS, Chung JY, Oh AY, Lee SJ, Choi DH, et al. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1-PUMA pathway. Cell Death Dis. 2011;2:e235.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of UrologyJinshan Hospital, Fudan UniversityShanghaiChina
  2. 2.Department of PathologyJinshan Hospital, Fudan UniversityShanghaiChina
  3. 3.Center LaboratoryJinshan Hospital, Fudan UniversityShanghaiChina

Personalised recommendations