Tumor Biology

, Volume 36, Issue 4, pp 2323–2334 | Cite as

Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation

  • Bo Zhai
  • Xian Jiang
  • Changjun He
  • Dali Zhao
  • Lixin Ma
  • Lishan Xu
  • Hongchi Jiang
  • Xueying Sun
Research Article


Sorafenib is the standard first-line systemic drug for advanced hepatocellular carcinoma (HCC), but it also induces the activation of Akt, which contributes to the mechanisms for the resistance to sorafenib. Arsenic trioxide (ATO) is a currently clinically used anticancer drug and displays its anticancer activities by inhibiting Akt activation. Therefore, we hypothesized that ATO may potentiate the anti-cancer activities of sorafenib against HCC. The results have demonstrated that ATO synergized with sorafenib to inhibit the proliferation and promote the apoptosis of HCC cells by diminishing the increased activation of Akt by sorafenib. ATO was shown to inhibit the expression or activation of Akt downstream factors, including glycogen synthase kinase (GSK)-3β, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which regulate cell apoptosis and were upregulated or activated by sorafenib. Both sorafenib and ATO downregulated the expression of cyclin D1, resulting in HCC cells arrested at G0/G1 phase. ATO downregulated the expression of Bcl-2 and Bcl-xL and upregulated the expression of Bax, indicating that ATO could induce the apoptosis of HCC cells through the intrinsic pathways; but sorafenib showed little effects on these proteins of Bcl-2 family. ATO synergized with sorafenib to suppress the growth of HCC tumors established in mice by inhibiting the proliferation and inducing the apoptosis of HCC cells in situ. These results indicate that ATO may be a potential agent that given in combination with sorafenib acts synergistically for treating HCC.


Arsenic trioxide Sorafenib Hepatocellular carcinoma Akt Apoptosis Proliferation 



This work was supported by grants from the National Natural Scientific Foundation of China (81172331, 81472321, and 81401975), and Heilongjiang Provincial Scientific Fund for Youths in China (QC2013C103 and QC2013C098).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu AX. Systemic treatment of hepatocellular carcinoma: dawn of a new era? Ann Surg Oncol. 2010;17:1247–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelley RK, Nimeiri HS, Munster PN, Vergo MT, Huang Y, Li CM, et al. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates. Ann Oncol. 2013;24:1900–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010;27:255–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res. 2010;30:4951–8.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13:2673–83.CrossRefPubMedGoogle Scholar
  11. 11.
    Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, et al. Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther. 2011;10:1007–17.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 2011;337:155–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by inducing autophagic cell death in hepatocellular carcinoma. Cancer Mol Ther. 2014;13:1589–98.CrossRefGoogle Scholar
  14. 14.
    Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, et al. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 2013;19:1760–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6:1–2.CrossRefPubMedGoogle Scholar
  16. 16.
    Luo L, Qiao H, Meng F, Dong X, Zhou B, Jiang H, et al. Arsenic trioxide synergizes with B7H3-mediated immunotherapy to eradicate hepatocellular carcinomas. Int J Cancer. 2006;118:1823–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA. Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Oncol Targets Ther. 2013;6:75–84.Google Scholar
  18. 18.
    Chen G, Wang K, Yang BY, Tang B, Chen JX, Hua ZC. Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. Int J Oncol. 2012;40:139–47.PubMedGoogle Scholar
  19. 19.
    Lin CC, Hsu C, Hsu CH, Hsu WL, Cheng AL, Yang CH. Arsenic trioxide in patients with hepatocellular carcinoma: a phase II trial. Investig New Drugs. 2007;25:77–84.CrossRefGoogle Scholar
  20. 20.
    Guilbert C, Annis MG, Dong Z, Siegel PM, Miller Jr WH, Mann KK. Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer. PLoS One. 2013;8:e85995. doi: 10.1371/journal.pone.0085995.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mann KK, Colombo M, Miller Jr WH. Arsenic trioxide decreases AKT protein in a caspase-dependent manner. Mol Cancer Ther. 2008;7:1680–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Xue P, Hou Y, Zhang Q, Woods CG, Yarborough K, Liu H, et al. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun. 2011;407:360–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao D, Zhai B, He C, Tan G, Jiang X, Pan S, et al. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal. 2014;26:1030–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma L, Li G, Zhu H, Dong X, Zhao D, Jiang X, et al. 2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and -2. Cancer Lett. 2014. doi: 10.1016/j.canlet.2014.09.011.PubMedCentralGoogle Scholar
  25. 25.
    Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumor Biol. 2013;34:181–92.CrossRefGoogle Scholar
  26. 26.
    Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013;5:345–52.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Villanueva A, Llovet JM. Second-line therapies in hepatocellular carcinoma: emergence of resistance to sorafenib. Clin Cancer Res. 2012;18:1824–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Serova M, de Gramont A, Tijeras-Raballand A, Dos Santos C, Riveiro ME, Slimane K, et al. Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Cancer Chemother Pharmacol. 2013;71:1297–307.CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang H, Ma Y, Chen X, Pan S, Sun B, Krissansen GW, et al. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cancer Sci. 2010;101:975–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Fecteau JF, Bharati IS, O’Hayre M, Handel TM, Kipps TJ, Messmer D. Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (Mcl-1). Mol Med. 2012;18:19–28.CrossRefPubMedGoogle Scholar
  32. 32.
    Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, et al. Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle. 2012;11:2843–55. doi: 10.4161/cc.21193.CrossRefPubMedGoogle Scholar
  33. 33.
    Tai WT, Shiau CW, Chen HL, Liu CY, Lin CS, Cheng AL, et al. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4:e485.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52:698–704.CrossRefPubMedGoogle Scholar
  35. 35.
    Rangwala F, Williams KP, Smith GR, Thomas Z, Allensworth JL, Lyerly HK, et al. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012;12:402.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rahmani M, Aust MM, Attkisson E, Williams Jr DC, Ferreira-Gonzalez A, Grant S. Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood. 2012;119:6089–98.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Parekh P, Rao KV. Overexpression of cyclin D1 is associated with elevated levels of MAP kinases, Akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biol Int. 2007;31:35–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Lo RK, Kwong YL. Arsenic trioxide suppressed mantle cell lymphoma by downregulation of cyclin D1. Ann Hematol. 2014;93:255–65.CrossRefPubMedGoogle Scholar
  40. 40.
    Xargay-Torrent S, López-Guerra M, Montraveta A, Saborit-Villarroya I, Rosich L, Navarro A, et al. Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma. Clin Cancer Res. 2013;19:586–97.CrossRefPubMedGoogle Scholar
  41. 41.
    Plastaras JP, Kim SH, Liu YY, Dicker DT, Dorsey JF, McDonough J, et al. Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007;67:9443–54.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Bo Zhai
    • 1
  • Xian Jiang
    • 2
  • Changjun He
    • 3
  • Dali Zhao
    • 2
  • Lixin Ma
    • 2
  • Lishan Xu
    • 1
  • Hongchi Jiang
    • 2
  • Xueying Sun
    • 2
  1. 1.Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
  2. 2.The Hepatosplenic Surgery Center, Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Department of Thoracic Surgery, The Third Affiliated HospitalHarbin Medical UniversityHarbinChina

Personalised recommendations