Tumor Biology

, Volume 36, Issue 3, pp 2185–2191 | Cite as

Vascular endothelial growth factor B coordinates metastasis of non-small cell lung cancer

  • Gang Liu
  • Shengbao Xu
  • Fanglei Jiao
  • Tao Ren
  • Qinchuan Li
Research Article

Abstract

Neovascularization is critical for the invasion and metastasis of non-small cell lung cancer (NSCLC). However, the molecular mechanism underlying the control of neovascularization of NSCLC is not completely understood. Both vascular endothelial growth factor B (VEGF-B) and matrix metalloproteinases 9 (MMP9) play essential roles in neovascularization of NSCLC. Here, we examined whether VEGF-B and MMP9 may affect each other to coordinate the neovascularization process in NSCLC. We found strong positive correlation of VEGF-B and MMP9 levels in the NSCLC from the patients. Moreover, patients that had NSCLC with metastasis had significantly higher levels of VEGF-B and MMP9 in the primary cancer. Using a human NSCLC line A549, we found that overexpression of VEGF-B increased expression of MMP9, while inhibition of VEGF-B decreased expression of MMP9. On the other hand, overexpression of MMP9 increased expression of VEGF-B, while inhibition of MMP9 decreased expression of VEGF-B. These data suggest that expression of VEGF-B and MMP9 may activate each other to enhance neovascularization. We then analyzed the underlying mechanism. Application of a specific ERK/MAPK inhibitor but not a PI3K/Akt inhibitor to VEGF-B-overexpressing A549 cells substantially abolished the effect of VEGF-B on MMP9 activation, while application of a specific PI3K/Akt inhibitor but not an ERK/MAPK inhibitor to MMP9-overexpressing A549 cells substantially abolished the effect of MMP9 on VEGF-B activation, suggesting that VEGF-B may activate MMP9 via ERK/MAPK signaling pathway, while MMP9 may activate VEGF-B via PI3K/Akt signaling pathway. Thus, our data highlight a coordinating relationship between VEGF-B and MMP9 in the regulation of neovascularization in NSCLC.

Keywords

Vascular endothelial growth factor B (VEGF-B) Matrix metalloproteinases 9 (MMP9), PI3K ERK/MAPK Non-small cell lung cancer (NSCLC) Metastasis 

Notes

Conflicts of interest

None

References

  1. 1.
    Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, et al. Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis. 2013;5:S389–96.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mitsudomi T, Suda K, Yatabe Y. Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol. 2013;10:235–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Pallis AG, Syrigos KN. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of NSCLC. Lung Cancer. 2013;80:120–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Jian H, Zhao Y, Liu B, Lu S. SEMA4b inhibits MMP9 to prevent metastasis of non-small cell lung cancer. Tumour Biol. 2014. doi: 10.1007/s13277-014-2409-8.Google Scholar
  5. 5.
    Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced foxo1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang W, Wu X, Tian Y. Crosstalk of AP4 and TGFbeta receptor signaling in NSCLC. Tumour Biol. 2014. doi: 10.1007/s13277-014-2674-6.Google Scholar
  7. 7.
    Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci. 2013;34:233–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9:661–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carrillo de Santa Pau E, Arias FC, Caso Pelaez E, Munoz Molina GM, Sanchez Hernandez I, Muguruza Trueba I, et al. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer. 2009;115:1701–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Riely GJ, Miller VA. Vascular endothelial growth factor trap in non small cell lung cancer. Clin Cancer Res. 2007;13:s4623–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.PubMedGoogle Scholar
  17. 17.
    Rhee JS, Coussens LM. Recking MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou X, Qi Y. Plgf inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014;35:9381–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Song H, Tian Z, Qin Y, Yao G, Fu S, Geng J. Astrocyte elevated gene-1 activates MMP9 to increase invasiveness of colorectal cancer. Tumour Biol. 2014;35:6679–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen Y, Jiang T, Mao A, Xu J. Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation. Tumour Biol. 2014. doi: 10.1007/s13277-014-2601-x.Google Scholar
  22. 22.
    Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17:62–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Mao D, Zhang Y, Lu H, Zhang H. Molecular basis underlying inhibition of metastasis of gastric cancer by anti-VEGFa treatment. Tumour Biol. 2014;35:8217–23.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Gang Liu
    • 1
  • Shengbao Xu
    • 2
  • Fanglei Jiao
    • 1
  • Tao Ren
    • 2
  • Qinchuan Li
    • 1
  1. 1.Department of Throatic Surgery, East HospitalTongji University School of MedicineShanghaiChina
  2. 2.Lung Cancer Center, East HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations