Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 2121–2126 | Cite as

Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer

  • Matúš Chocholatý
  • Marie Jáchymová
  • Marek Schmidt
  • Klára Havlová
  • Anna Křepelová
  • Tomáš Zima
  • Marko Babjuk
  • Marta Kalousová
Research Article

Abstract

The receptor for advanced glycation end products (RAGE) and its ligands are involved in the pathogenesis of cancer. Glyoxalase I (GLO1) is an enzyme which detoxifies advanced glycation end product (AGE) precursors. The aim of the study was to find out the relationship between four polymorphisms (single nucleotide polymorphism, SNP) of the RAGE gene (AGER) and one SNP of the GLO1 gene and clear cell renal cancer (ccRCC). All polymorphisms (rs1800625 RAGE -429T/C, rs1800624 -374T/A, rs3134940 2184A/G, rs2070600 557G/A (G82S), and GLO1 rs4746 419A/C(E111A)) were determined by PCR-RFLP in 214 patients with ccRCC. A group of 154 healthy subjects was used as control. We found significant differences in the allelic and genotype frequencies of GLO1 E111A (419A/C) SNP between patients and controls—higher frequency of the C allele in ccRCC—58.6 vs. 44.5 % in controls, OR (95 % CI) 1.77 (1.32–2.38), p = 0.0002 (corrected p = 0.001); OR (95 % CI) CC vs. AA 2.76 (1.5–4.80), p = 0.0004 (corrected p = 0.002); and AC+CC vs. AA 2.03 (1.23–3.30), p = 0.0034 (corrected p = 0.017). High aggressiveness of the tumor (grade 4) was associated with the presence of C allele RAGE -429T/C SNP (original p = 0.001, corrected p = 0.005) and G allele RAGE 2184A/G SNP (p < 0.001 and p < 0.005), and for genotypes RAGE -429CC (original p = 0.008, corrected p = 0.04) and RAGE 2184GG SNP (original p = 0.005, corrected p = 0.025). Our results demonstrate the link of E111A GLO1 SNP to the presence of the tumor and the connection of RAGE -429T/C and 2184A/G SNPs with the aggressiveness of the tumor. Further studies are required, especially with respect to potential therapeutic implications.

Keywords

Receptor for advanced glycation end products RAGE Gloyxalase I GLO1 Renal cell cancer 

Notes

Acknowledgments

This study was supported by research projects MH CZ-DRO VFN 64165, 00064203 (FN MOTOL), PRVOUK - P25/LF1/2, CZ.2.16/3.1.00/24022OPPK, NF-CZ11-PDP-3-003-2014 and by grant GAUK 104610. The authors are thankful for the technical assistance of Mrs. Hana Řeháková from the Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and Zdenička Šinglárová from the Department of Urology, University Hospital Motol. The authors would also like to thank to MSc. Aleš Kuběna for statistical consultation.

Conflicts of interest

None

References

  1. 1.
    Miller DC, Ruterbusch J, Colt JS, Davis FG, Linehan WM, Chow WH, et al. Contemporary clinical epidemiology of renal cell carcinoma: insight from a population based case–control study. J Urol. 2010;184:2254–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003;30(4):843–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Ather MH, Masood N, Siddiqui. Current management of advanced and metastatic renal cell carcinoma. Urol J. 2010;7:1–9.PubMedGoogle Scholar
  4. 4.
    Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267:14998–5004.PubMedGoogle Scholar
  6. 6.
    Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, et al. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 2002;3:123–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108:949–55.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Osawa M, Yamamoto Y, Munesue S, Murakami N, Sakurai S, Watanabe T, et al. De-N-glycosylation or G82S mutation of RAGE senzitizes its interaction with advanced glycation endproducts. Biochem Biophys Acta. 2007;1770:1468–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaňková K, Vašku A, Hájek D, Záhejský J, Vasku V. Association of G82S polymorphism in the RAGE gene with complications in type 2 diabetes. Diabetes Care. 1999;22:1745.CrossRefPubMedGoogle Scholar
  10. 10.
    Gu H, Yang L, Sun Q, Zhou B, Tang N, et al. Gly82Ser polymorphism of the receptor for advanced glycation end products is associated with an increased risk of gastric cancer in a Chinese population. Clin Cancer Res. 2008;14:3627–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang S, Hou X, Zi S, Wang Y, Chen L, Kong B. Polymorphisms of receptor for advanced glycation end products and risk of epithelial ovarian cancer in Chinese patients. Cell Physiol Biochem. 2013;31:525–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Tesařová P, Kalousová M, Jáchymová M, Mestek O, Petruželka L, Zima T. Receptor for advanced glycation end products (RAGE)—soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest. 2007;25:720–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Thornalley PJ. Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans. 2003;31:1343–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Antognelli C, Mezzasoma L, Mearini E, Talesa VN. Glyoxalase 1-419C > A variant is associated with oxidative stress: implications in prostate cancer progression. PLoS ONE. 2013;8(9):e74014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Germanová A, Tesarová P, Jáchymová M, Zvára K, Zima T, Kalousová M. Glyoxalase I Glu111Ala polymorphism in patients with breast cancer. Cancer Invest. 2009;27:655–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Krechler T, Jáchymová M, Mestek O, Žák A, Zima T, Kalousová M. Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer. Clin Biochem. 2010;43:882–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Kalousová M, Jáchymová M, Mestek O, Hodková M, Kazderová M, Tesar V, et al. Receptor for advanced glycation end products—soluble form and gene polymorphisms in chronic haemodialysis patients. Nephrol Dial Transplant. 2007;22:2020–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Kalousová M, Germanová A, Jáchymová M, Mestek O, Tesar V, Zima T. A419C (E111A) polymorphism of the glyoxalase I gene and vascular complications in chronic hemodialysis patients. Ann N Y Acad Sci. 2008;1126:268–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Kalousová M, Zima T, Tesař V, Dusilová-Sulková S, Škrha J. Advanced glycoxidation end products in chronic disease and genetic background. Mutat Res. 2005;579:37–46.CrossRefPubMedGoogle Scholar
  21. 21.
    Thornalley PJ, Rabbani N. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol. 2011;22(3):318–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, et al. Glyoxalase I (GLO1) is up-regulated in pancreatic cancerous tissues compared with related non-cancerous tissues. Anticancer Res. 2012;32(8):3219–22.PubMedGoogle Scholar
  23. 23.
    Antognelli C, Baldracchini F, Talesa VN, Constantini E, Zucchi A, Mearini E. Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J. 2006;12:222–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Santarius T, Bignell GR, Greenman CD, Widaa S, Chen L, Mahoney CL, et al. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer. 2010;49(8):711–25.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tanaka T, Kuramitsu Y, Wang Y, Baron B, Kitagawa T, Tokuda K, et al. Glyoxalase 1 as a candidate for indicating the metastatic potential of SN12C human renal cell carcinoma cell clones. Oncol Rep. 2013;30(5):2365–70.PubMedGoogle Scholar
  26. 26.
    Barua M, Jenkins EC, Chen W, Kuizon S, Pullarkat RK, Junaid MA. Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity—implications for autism. Autism. 2011;4:262–70.CrossRefGoogle Scholar
  27. 27.
    DiNorcia J, Lee MK, Moroziewicz DN, Winner M, Suman P, Bao F, et al. RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer. J Gastrointest Surg. 2012;16(1):104–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Miki S, Kasayama S, Miki Y, et al. Expression of receptor for advanced glycosylation end products on renal cell carcinoma cells in vitro. Biochem Biophys Res Commun. 1993;196:984–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Lin L, Zhong K, Sun Z, Wu G, Ding G. Receptor for advanced glycation end products (RAGE) partially mediates HMGB1-ERKs activation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol. 2012;138:11–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Eckel-Passow JE, Serie DJ, Bot BM, Joseph RW, Hart SN, Cheville JC, et al. Somatic expression of ENRAGE is associated with obesity status among patients with clear cell renal cell carcinoma. Carcinogenesis. 2014;35(4):822–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang X, Cui E, Zeng H, Hua F, Wang B, Mao W, et al. RAGE genetic polymorphisms are associated with risk, chemotherapy response and prognosis in patients with advanced NSCLC. PLoS One. 2012;7(10):e43734.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lu W, Feng B. The -374A allele of the RAGE gene as a potential protective factor for vascular complications in type 2 diabetes: a meta-analysis. Tohoku J Exp Med. 2010;220(4):291–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Falcone C et al. The -374 T/A RAGE polymorphism protects against future cardiac events in non-diabetic patients with coronary artery disease. Arch Med Res. 2008;39:320–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Bartling B, Hofmann HS, Weigle B, Silber RE, Simm A. Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis. 2005;26:293–301.CrossRefPubMedGoogle Scholar
  35. 35.
    Hudson BI, Stickland MH, Futers TS, Grant PJ. Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes. 2001;50:1505–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Kaňková K, Stejskalová A, Pácal L, Tschoplová S, Hertlová M, Krusová D, et al. Genetic risk factors for diabetic nephropathy on chromosomes 6p and 7q identified by the set-association approach. Diabetologia. 2007;50:990–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Kalousová M, Jáchymová M, Germanová A, Kuběna AA, Tesař V, Zima T. Genetic predisposition to advanced glycation end products toxicity is related to prognosis of chronic hemodialysis patients. Kidney Blood Press Res. 2010;33:30–6.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Matúš Chocholatý
    • 1
  • Marie Jáchymová
    • 2
  • Marek Schmidt
    • 1
  • Klára Havlová
    • 1
  • Anna Křepelová
    • 3
  • Tomáš Zima
    • 2
  • Marko Babjuk
    • 1
  • Marta Kalousová
    • 2
  1. 1.Department of Urology, Second Faculty of MedicineCharles University in Prague and University Hospital MotolPragueCzech Republic
  2. 2.Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
  3. 3.Department of Biology and Medical Genetics, Second Faculty of MedicineCharles University in Prague and University Hospital MotolPragueCzech Republic

Personalised recommendations