Tumor Biology

, Volume 36, Issue 3, pp 2077–2085 | Cite as

Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells

  • Dexiang Zhang
  • Yueqi Wang
  • Yuedi Dai
  • Jiwen Wang
  • Tao Suo
  • Hongtao Pan
  • Han Liu
  • Sheng Shen
  • Houbao Liu
Research Article


Hepatocellular carcinoma (HCC) is one of the most common malignancies with a poor response to chemotherapy. It is very important to identify novel diagnosis biomarkers and therapeutic targets. RIP140, a regulator of estrogen receptor, recently has been found to be involved in the tumorigenesis. However, its function in the progression of HCC remains poorly understood. Here, we found that the expression of RIP140 was downregulated in the HCC tissues. Moreover, overexpression of RIP140 in HCC cells inhibited cell proliferation and migration, while downregulation of RIP140 promoted the tumorigenicity of HCC cells in vitro and in vivo. Mechanistically, RIP140 interacted with beta-catenin and negatively regulated beta-catenin/TCF signaling. Taken together, our study suggests the suppressive roles of RIP140 in the pathogenesis of HCC.


HCC RIP140 Beta-catenin Cell proliferation and migration 



This work was supported by the National Natural Science Foundation of China (81272728).

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Dwyer JP, Hosking P, Lubel J. Multiple liver lesions in a patient with positive hepatitis C serology and elevated AFP: is it HCC? Gastroenterology. 2014;147:e12–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Cho JY, Paik YH, Sohn W, et al. Patients with chronic hepatitis B treated with oral antiviral therapy retain a higher risk for HCC compared with patients with inactive stage disease. Gut. 2014;63:1943–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Levi D, Tzakis A. HBV and HCC: comment on “Role of hepatitis B virus infection in the prognosis after hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a Western dual-center experience”. Arch Surg. 2009;144(10):913.CrossRefPubMedGoogle Scholar
  5. 5.
    Enwonwu CO. The role of dietary aflatoxin in the genesis of hepatocellular cancer in developing countries. Lancet. 1984;2(8409):956–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Trevisani F, Cantarini MC, Labate AM, et al. Surveillance for hepatocellular carcinoma in elderly Italian patients with cirrhosis: effects on cancer staging and patient survival. Am J Gastroenterol. 2004;99(8):1470–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Park EK, Kim HJ, Kim CY, et al. A comparison between surgical resection and radiofrequency ablation in the treatment of hepatocellular carcinoma. Ann Surg Treat Res. 2012;87(2):72–80.CrossRefGoogle Scholar
  8. 8.
    Yamashita Y, Imai D, Bekki Y, et al. Surgical outcomes of anatomical resection for solitary recurrent hepatocellular carcinoma. Anticancer Res. 2012;34(8):4421–6.Google Scholar
  9. 9.
    Wan HG, Xu H, Gu YM, Wang H, Xu W, Zu MH (2014) Comparison osteopontin vs AFP for the diagnosis of HCC: a meta-analysis. Clin Res Hepatol Gastroenterol.Google Scholar
  10. 10.
    De Rienzo G, Bishop JA, Mao Y, et al. Disc1 regulates both beta-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis. Faseb J. 2012;25(12):4184–97.CrossRefGoogle Scholar
  11. 11.
    Kolligs FT, Bommer G, Goke B. Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion. 2002;66(3):131–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 2004;131(20):5103–15.CrossRefPubMedGoogle Scholar
  13. 13.
    Li YJ, Wei ZM, Meng YX, Ji XR. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol. 2005;11(14):2117–23.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene. 2008;27(37):5075–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Dahmani R, Just PA, Perret C. The Wnt/beta-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2009;35(11):709–13.CrossRefGoogle Scholar
  16. 16.
    Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008;4(5):647–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Li P, Cao Y, Li Y, Zhou L, Liu X, Geng M. Expression of Wnt-5a and beta-catenin in primary hepatocellular carcinoma. Int J Clin Exp Pathol. 2012;7(6):3190–5.Google Scholar
  18. 18.
    Lin J, Ding L, Jin R, et al. Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140 kDa (RIP140) interact and cooperate in estrogen signaling. Int J Biochem Cell Biol. 2009;41(7):1613–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Cavailles V, Dauvois S, L'Horset F, et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. Embo J. 1995;14(15):3741–51.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Docquier A, Harmand PO, Fritsch S, Chanrion M, Darbon JM, Cavailles V. The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res. 2012;16(11):2959–70.CrossRefGoogle Scholar
  21. 21.
    Zschiedrich I, Hardeland U, Krones-Herzig A, et al. Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood. 2008;112(2):264–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Heery DM, Hoare S, Hussain S, Parker MG, Sheppard H. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J Biol Chem. 2001;276(9):6695–702.CrossRefPubMedGoogle Scholar
  23. 23.
    Carascossa S, Gobinet J, Georget V, et al. Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Mol Endocrinol. 2006;20(7):1506–18.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Docquier A, Augereau P, Lapierre M, et al. The RIP140 gene is a transcriptional target of E2F1. PLoS One. 2012;7(5):e35839.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rytinki MM, Palvimo JJ. SUMOylation modulates the transcription repressor function of RIP140. J Biol Chem. 2008;283(17):11586–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Ho PC, Gupta P, Tsui YC, Ha SG, Huq M, Wei LN. Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cell Signal. 2008;20(10):1911–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Heim KC, Gamsby JJ, Hever MP, et al. Retinoic acid mediates long-paced oscillations in retinoid receptor activity: evidence for a potential role for RIP140. PLoS One. 2009;4(10):e7639.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Puri V, Virbasius JV, Guilherme A, Czech MP. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol (Oxf). 2008;192(1):103–15.CrossRefGoogle Scholar
  29. 29.
    Morganstein DL, Christian M, Turner JJ, Parker MG, White R. Conditionally immortalized white preadipocytes: a novel adipocyte model. J Lipid Res. 2008;49(3):679–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Puri V, Chakladar A, Virbasius JV, et al. RNAi-based gene silencing in primary mouse and human adipose tissues. J Lipid Res. 2007;48(2):465–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Powelka AM, Seth A, Virbasius JV, et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest. 2006;116(1):125–36.CrossRefPubMedGoogle Scholar
  32. 32.
    Xue J, Zhao H, Shang G, et al. RIP140 is associated with subclinical inflammation in type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2012;121(1):37–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Berriel Diaz M, Krones-Herzig A, Metzger D, et al. Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology. 2008;48(3):782–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Nautiyal J, Steel JH, Mane MR, et al. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development. 2012;140(5):1079–89.CrossRefGoogle Scholar
  35. 35.
    Heim KC, White KA, Deng D, et al. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells. Mol Cancer. 2007;6:57.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lapierre M, Bonnet S, Bascoul-Mollevi C, et al. RIP140 increases APC expression and controls intestinal homeostasis and tumorigenesis. J Clin Invest. 2012;124(5):1899–913.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Dexiang Zhang
    • 1
  • Yueqi Wang
    • 1
  • Yuedi Dai
    • 2
  • Jiwen Wang
    • 1
  • Tao Suo
    • 1
  • Hongtao Pan
    • 1
  • Han Liu
    • 1
  • Sheng Shen
    • 1
  • Houbao Liu
    • 1
    • 3
  1. 1.General Surgery Department, Zhongshan Hospital, General Surgery InstituteFudan UniversityShanghaiChina
  2. 2.Department of Medical OncologyCancer Hospital of Fudan UniversityShanghaiChina
  3. 3.Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations