Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 2059–2064 | Cite as

Associations of polymorphisms in the bone morphogenetic protein-2 gene with risk and prognosis of osteosarcoma in a Chinese population

Research Article

Abstract

Osteosarcoma is the most common type of bone cancer in adolescence. Bone morphogenetic protein-2 (BMP-2) plays important roles in the development of bone and cartilage and in inhibiting the tumorigenicity of cancer stem cells in human osteosarcoma cell line. The aim of this study was to examine whether polymorphisms in the BMP2 gene are associated with osteosarcoma risk and prognosis in Chinese population. Five single nucleotide polymorphisms (SNP) in the BMP2 gene were genotyped in a case–control study, including 203 osteosarcoma patients and 406 cancer-free controls. We found that rs3178250 TT genotype was associated with significant increased osteosarcoma risk (age-adjusted odds ratio (OR) = 2.06, 95 % confidence intervals (CI) of 1.23–3.45) compared with CC genotype. Subjects carrying the AA genotype of rs1005464 had significant decreased cancer risk (age-adjusted OR = 0.44, 95 % CI of 0.23–0.85) compared with those carrying the GG genotype. Haplotype analysis also showed that carriers of the G-T-T-G and A-T-T-G haplotypes (rs235764-rs3178250-rs235768-rs1005464) had significant increased risks of osteosarcoma (age-adjusted OR = 1.85, 95 % CI of 1.28–2.66 and age-adjusted OR = 1.51, 95 % CI of 1.06–2.16) compared with the G-C-T-A haplotype carriers. Besides, rs1005464 was an independent prognostic factor for osteosarcoma patients (GA vs. GG: age-adjusted hazard radio (HR) = 0.60, 95 % CI of 0.36–0.99). Our data suggest that genetic mutations in the BMP2 gene are associated with osteosarcoma risk and prognosis in a Chinese population.

Keywords

Osteosarcoma BMP2 Genetic variants Haplotype Susceptibility Prognosis 

Notes

Acknowledgments

This study was supported by a grant from Jiangsu provincial clinical medical science and technology (BL2012002).

Conflicts of interest

None

References

  1. 1.
    Kramárová E, Stiller CA. The international classification of childhood cancer. Int J Cancer. 1996;68:759–65.CrossRefPubMedGoogle Scholar
  2. 2.
    Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dorfman HA, Czerniak B. Bone cancers. Cancer Suppl. 1995;75:203–10.CrossRefGoogle Scholar
  4. 4.
    Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125:555–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaushik S, Smoker WR, Frable WJ. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma. Skeletal Radiol. 2002;31:103–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Hauben EI, Arends J, Vandenbroucke JP, van Asperen CJ, Van Marck E, Hogendoorn PC. Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur J Hum Genet. 2003;11:611–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Ruza E, Sotillo E, Sierrasesúmaga L, Azcona C, Patiño-García A. Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Ialpha1 genes and their relationship with height in children with bone cancer. J Pediatr Hematol Oncol. 2003;25:780–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Mirabello L, Yu K, Berndt SI, Burdett L, Wang Z, Chowdhury S, et al. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer. 2011;11:209.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242:1528–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Marie PJ, Debiais F, Haÿ E. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol. 2002;17:877–85.PubMedGoogle Scholar
  12. 12.
    Wang L, Park P, La Marca F, Than K, Rahman S, Lin CY. Bone formation induced by BMP-2 in human osteosarcoma cells. Int J Oncol. 2013;43:1095–102.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang L, Park P, Zhang H, La Marca F, Claeson A, Valdivia J, et al. BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol Ther. 2011;11:457–63.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, et al. Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res. 1994;9:855–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Zheng MH, Wood DJ, Wysocki S, Papadimitriou JM, Wang EA. Recombinant human bone morphogenetic protein-2 enhances expression of interleukin-6 and transforming growth factor-beta 1 genes in normal human osteoblast-like cells. J Cell Physiol. 1994;159:76–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008;27:6322–33.CrossRefPubMedGoogle Scholar
  19. 19.
    McGuigan FE, Larzenius E, Callreus M, Gerdhem P, Luthman H, Akesson K. Variation in the BMP2 gene: bone mineral density and ultrasound in young adult and elderly women. Calcif Tissue Int. 2007;81:254–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Schrauwen I, Thys M, Vanderstraeten K, Fransen E, Dieltjens N, Huyghe JR, et al. Association of bone morphogenetic proteins with otosclerosis. J Bone Miner Res. 2008;23:507–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Valdes AM, Hart DJ, Jones KA, Surdulescu G, Swarbrick P, Doyle DV, et al. Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis Rheum. 2004;50:2497–507.CrossRefPubMedGoogle Scholar
  22. 22.
    Conne B, Stutz A, Vassalli JD. The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med. 2000;6:637–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Ting TY, Wong RW, Rabie AB. Analysis of genetic polymorphisms in skeletal class I crowding. Am J Orthod Dentofacial Orthop. 2011;140:e9–15.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Orthopedics, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina

Personalised recommendations