Skip to main content
Log in

Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

LATS2 (Large tumor suppressor) has been reported to be dys-regulated in several cancer types. However, its function in non-small cell lung cancer (NSCLC) remains poorly understood. Here, it was found that the expression level of LATS2 was decreased in NSCLC tissues. Moreover, forced expression of LATS2 in NSCLC cells inhibited cell growth and migration, while knockdown of the expression of LATS2 promoted the tumorigenicity of NSCLC cells. Mechanistically, LATS2 was found to negatively regulate NF-κB signaling in NSCLC cells. Taken together, our study suggested that down-regulation of LATS2 was very important in the progression of NSCLC, and restoring the function of LATS2 might be a promising therapeutic strategy for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Anagnostou VK, Dimou AT, Botsis T, et al. Molecular classification of nonsmall cell lung cancer using a 4-protein quantitative assay. Cancer. 2012;118(6):1607–18.

    Article  CAS  PubMed  Google Scholar 

  3. Lazar V, Suo C, Orear C, et al. Integrated molecular portrait of non-small cell lung cancers. BMC Med Genom. 2012;6:53.

    Article  Google Scholar 

  4. Goodgame B, Viswanathan A, Zoole J, et al. Risk of recurrence of resected stage I non-small cell lung cancer in elderly patients as compared with younger patients. J Thorac Oncol. 2009;4(11):1370–4.

    Article  PubMed  Google Scholar 

  5. Broet P, Camilleri-Broet S, Zhang S, et al. Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: implications for chemotherapy selection. Cancer Res. 2009;69(3):1055–62.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell JM, Lockwood WW, Buys TP, et al. Integrative genomic and gene expression analysis of chromosome 7 identified novel oncogene loci in non-small cell lung cancer. Genome. 2008;51(12):1032–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kelsey CR, Fornili M, Ambrogi F, et al. Metastasis dynamics for non-small-cell lung cancer: effect of patient and tumor-related factors. Clin Lung Cancer. 2012;14(4):425–32.

    Article  Google Scholar 

  8. Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 1995;121(4):1053–63.

    CAS  PubMed  Google Scholar 

  9. Tao W, Zhang S, Turenchalk GS, et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet. 1999;21(2):177–81.

    Article  CAS  PubMed  Google Scholar 

  10. Hergovich A, Hemmings BA. Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. Biofactors. 2009;35(4):338–45.

    Article  CAS  PubMed  Google Scholar 

  11. Nishioka N, Inoue K, Adachi K, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell. 2009;16(3):398–410.

    Article  CAS  PubMed  Google Scholar 

  12. Muller-Taubenberger A, Kastner PM, Schleicher M, Bolourani P, Weeks G. Regulation of a LATS-homolog by Ras GTPases is important for the control of cell division. BMC Cell Biol. 2012;15(1):25.

    Article  Google Scholar 

  13. Cai H, Xu Y. The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal. 2012;11(1):31.

    Article  Google Scholar 

  14. Colombani J, Polesello C, Josue F, Tapon N. Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage. Curr Biol. 2006;16(14):1453–8.

    Article  CAS  PubMed  Google Scholar 

  15. Xia H, Qi H, Li Y, et al. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene. 2002;21(8):1233–41.

    Article  CAS  PubMed  Google Scholar 

  16. Liang Y, Li Y, Li Z, et al. Mechanism of folate deficiency-induced apoptosis in mouse embryonic stem cells: cell cycle arrest/apoptosis in G1/G0 mediated by microRNA-302a and tumor suppressor gene Lats2. Int J Biochem Cell Biol. 2012;44(11):1750–60.

    Article  CAS  PubMed  Google Scholar 

  17. St John MA, Tao W, Fei X, et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet. 1999;21(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hergovich A. YAP-Hippo signalling downstream of leukemia inhibitory factor receptor: implications for breast cancer. Breast Cancer Res. 2012;14(6):326.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mojca S, Vid M, Damjan G. LATS2 tumour specific mutations and down-regulation of the gene in non-small cell carcinoma. Lung Cancer. 2009;64:25–262.

    Google Scholar 

  20. Lignitto L, Arcella A, Sepe M, et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun. 2012;4:1822.

    Article  Google Scholar 

  21. Li Y, Pei J, Xia H, Ke H, Wang H, Tao W. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene. 2003;22(28):4398–405.

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaki K, Fujimoto J, Kumimoto H, et al. Frequent polymorphic changes but rare tumor specific mutations of the LATS2 gene on 13q11-12 in esophageal squamous cell carcinoma. Int J Oncol. 2002;21(5):1053–7.

    CAS  PubMed  Google Scholar 

  23. Li W, Wang L, Katoh H, Liu R, Zheng P, Liu Y. Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers. Cancer Res. 2012;71(6):2162–71.

    Article  Google Scholar 

  24. Lin XY, Zhang XP, Wu JH, Qiu XS, Wang EH. Expression of LATS1 contributes to good prognosis and can negatively regulate YAP oncoprotein in non-small-cell lung cancer. Tumour Biol. 2012;35(7):6435–43.

    Article  Google Scholar 

  25. Ke H, Pei J, Ni Z, et al. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp Cell Res. 2004;298(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  26. Starczynowski DT, Lockwood WW, Delehouzee S, et al. TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest. 2012;121(10):4095–105.

    Article  Google Scholar 

  27. Nair VS, Gevaert O, Davidzon G, Plevritis SK, West R. NF-kappaB protein expression associates with (18)F-FDG PET tumor uptake in non-small cell lung cancer: a radiogenomics validation study to understand tumor metabolism. Lung Cancer. 2012;83(2):189–96.

    Article  Google Scholar 

  28. Wang LH, Yang JY, Yang SN, et al. Suppression of NF-kappaB signaling and P-glycoprotein function by gambogic acid synergistically potentiates adriamycin-induced apoptosis in lung cancer. Curr Cancer Drug Targets. 2012;14(1):91–103.

    Article  CAS  Google Scholar 

  29. Samykutty A, Shetty AV, Dakshinamoorthy G, et al. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS One. 2012;8(6):e65889.

    Article  Google Scholar 

  30. Suh J, Rabson AB. NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem. 2009;91(1):100–17.

    Article  Google Scholar 

  31. Chen X, Su Y, Fingleton B, et al. Increased plasma MMP9 in integrin alpha1-null mice enhances lung metastasis of colon carcinoma cells. Int J Cancer. 2005;116(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  32. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306(5939):194–6.

    Article  CAS  PubMed  Google Scholar 

  33. Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H, Oren M. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 2006;20(19):2687–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Smolen GA, Haber DA. Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 2008;68(8):2789–94.

    Article  CAS  PubMed  Google Scholar 

  35. Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem. 2012;285(27):20547–57.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81201840), the Natural Science Foundation of Shanghai (13ZR1461300), the Health Bureau Foundation of Shanghai (20124Y152), and Chenxing Young Scholarship of Shanghai Jiaotong University.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Fang.

Additional information

Feng Yao and Hongcheng Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, F., Liu, H., Li, Z. et al. Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells. Tumor Biol. 36, 2049–2057 (2015). https://doi.org/10.1007/s13277-014-2812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2812-1

Keywords

Navigation