Tumor Biology

, Volume 36, Issue 3, pp 2013–2021 | Cite as

β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway

  • Jia Song
  • Jixiang Zhang
  • Jing Wang
  • Jun Wang
  • Xufeng Guo
  • Weiguo Dong
Research Article

Abstract

β1 integrin (ITGB1) is the major expressed integrin protein of normal cells and tumor-associated cells. It is often up-regulated in human malignancies and is involved in many developmental processes, such as tumor progression and metastasis. However, little is known about the function of ITGB1 in colorectal cancer. We constructed lentiviral vectors expressing ITGB1 or ITGB1-specific RNA interference (RNAi) and an unrelated control vector. After infecting HT29 cells in vitro, proliferation and migration were evaluated by Cell Counting Kit 8 (CCK-8) assays, transwell invasion assays, and Western blots. The influence of lentivirus infection on the tumor development capacity of HT29 cells in vivo was examined by xenografting the tumor cells. The expression of ITGB1 in the xenografted tumor cells was analyzed by immunohistochemistry. The up-regulation of ITGB1 significantly increased the proliferation in HT29 cells in vitro. Moreover, we found that the overexpression of ITGB1 up-regulated sonic hedgehog (Shh) while down-regulating Gli1 and SuFu in HT29-ITGB1 cells compared to controls. Moreover, the levels of c-myc and cyclin D1 proteins were up-regulated. Transwell assays showed that the number of migrating HT29-RNAi cells was lower than that in the other cell groups, indicating that ITGB1 significantly enhances the invasive ability of HT29 cells. In addition to these in vitro results, ITGB1 was found to be a significantly effective growth factor in a xenografted tumor mouse model. These results suggest that ITGB1 induces growth and invasion in a human colorectal cancer cell line through the hedgehog (Hh) signaling pathway in vitro and in vivo.

Keywords

Integrin Colorectal cancer Hedgehog signaling pathway 

Notes

Acknowledgments

This work was supported by research grants from the National Natural Science Foundation of China (No. 81172069) and the Science and Technology Department of Hubei Province (No. 2010CDA043).

Conflicts of interest

None

References

  1. 1.
    Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  4. 4.
    Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62:933–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World J Gastroenterol. 2009;15:3734–43.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22:1958–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Perrigue MM, Kantor ED, Hastert TA, Patterson R, Potter JD, Neuhouser ML, et al. Eating frequency and risk of colorectal cancer. Cancer Causes Control. 2014;12:2107–15.Google Scholar
  9. 9.
    Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57:1576–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.CrossRefPubMedGoogle Scholar
  11. 11.
    Dahmane N, Ruizi AA. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.PubMedGoogle Scholar
  12. 12.
    Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Markku V, Jussi T. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.CrossRefGoogle Scholar
  14. 14.
    Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15:801–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer. Oncologist. 2012;17:1090–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yan R, Peng X, Yuan X, Huang DL, Chen J, Lu QQ, et al. Suppression of growth and migration by blocking the hedgehog signaling pathway in gastric cancer cells. Cell Oncol. 2013;36:421–35.CrossRefGoogle Scholar
  17. 17.
    Wang H, Li YY, Wu YY, Nie YQ. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer. Asian Pac J Cancer Prev. 2012;13:2319–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton JA. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71:1092–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Hyne RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.CrossRefGoogle Scholar
  20. 20.
    Melker AA, Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays. 1999;21:499–509.CrossRefPubMedGoogle Scholar
  21. 21.
    Gilcrease MZ. Integrin signaling in epithelial cells. Cancer Lett. 2007;247:1–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Aumailley M, Pesch M, Tunggal L, Gaill F, Fässler R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin deficient embryoid bodies. J Cell Sci. 2001;113:259–68.Google Scholar
  23. 23.
    Arao S, Masumoto A, Otsuki M. β1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas. 2000;20:129–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial–mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305:35–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Stroeke PJ, van Rijthoven EA, Boer E, Geerts D, Roos E. Cytoplasmic domain mutants of β1 integrin, expressed in β1-knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis. Oncogene. 2000;19:1232–8.CrossRefGoogle Scholar
  26. 26.
    Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta integrins regulates mammary proliferation and maintain the integrity of mammary alveoli. EMBO J. 2005;24:1942–53.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brakebusch C, Fassler R. Beta1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 2005;24:403–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004;64:8585–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Song J, Peng XL, Ji MY, Ai MH, Zhang JX, Dong WG. Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. World J Gastroenterol. 2013;19:4143–52.Google Scholar
  30. 30.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Lei XF, Lv XG, Liu M, Yang ZR, Ji MY, Guo XF, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012;417:864–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu QS, Zhang J, Liu M, Dong WG. Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci. 2010;101:1807–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang J, Liu QS, Dong WG. Blockade of proliferation and migration of gastric cancer via targeting CDH17 with an artificial microRNA. Med Oncol. 2011;28:494–501.CrossRefPubMedGoogle Scholar
  34. 34.
    Han JB, Tao ZZ, Chen SM, Kong YG, Xiao BH. Adenovirus-mediated transfer of tris-shRNAs induced apoptosis of nasopharyngeal carcinoma cell in vitro and in vivo. Cancer Lett. 2011;209:162–9.CrossRefGoogle Scholar
  35. 35.
    Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D. Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res. 2007;67:659–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Varnat F, Siegl-Cachedenier I, Malerba M, Gervaz P, Ruizi AA. Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med. 2010;2:1–18.CrossRefGoogle Scholar
  37. 37.
    You S, Zhou J, Chen S, Zhou P, Lv JH, Han X, et al. PTCH1, a receptor of Hedgehog signaling pathway, is correlated with metastatic potential of colorectal cancer. Ups J Med Sci. 2010;115:169–75.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yoshimoto AN, Bernardazzi C, Carneiro AJ, Elia CS, Martinusso CA, Ventura GM, et al. Hedgehog pathway signaling regulates human colon carcinoma HT-29 epithelial cell line apoptosis and cytokine secretion. PLoS One. 2012;7:e45332.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, et al. β1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24:3402–12.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell. 2006;10:187–97.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jia Song
    • 1
    • 2
  • Jixiang Zhang
    • 1
  • Jing Wang
    • 1
  • Jun Wang
    • 1
  • Xufeng Guo
    • 1
  • Weiguo Dong
    • 1
  1. 1.Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  2. 2.Xinjiang Tumor HospitalXinjiang Medical UniversityUrumqiPeople’s Republic of China

Personalised recommendations