Tumor Biology

, Volume 36, Issue 3, pp 1943–1953 | Cite as

Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms

  • Anne-Laure Trépant
  • Christelle Bouchart
  • Sandrine Rorive
  • Sébastien Sauvage
  • Christine Decaestecker
  • Pieter Demetter
  • Isabelle Salmon
Research Article


Despite advances in surgical and adjuvant treatments, overall survival of glioblastoma (GBM) patients remains poor. The cancer stem cell concept suggests that a rare stem cell population, called glioma stem cells (GSCs), has high ability to self-renewal leading to recurrence in GBM. The identification of specific markers of GSCs would provide a powerful tool to detect and to characterise them in order to develop targeted therapies. We carried out a comparative analysis based on the identification of inter-study concordances to identify the genes that exhibit at best differential levels of expression between GSC-enriched cell cultures and differentiated tumour cell cultures from independent studies using DNA chip microarray technologies. We finally studied the protein expression of the marker we considered the most specific by immunohistochemistry and semi-quantitative analysis on a retrospective series of 18 GBMs. Of the selected studies, 32 genes were retained. Among them, eight genes were identified to be overexpressed in GSC-enriched cultures compared to differentiated tumour cell cultures. Finally, among the eight genes, oligodendrocyte lineage transcription factor 2 (OLIG2) was characterised by the most different expression level in the “GSC model” compared to the “differentiated tumour cells model”. Our approach suggests that OLIG2 is the most specific GSC marker; additional investigations with careful considerations about methodology and strategies of validation are, however, mandatory.


Olig2 Glioblastoma Glioma stem cells Microarray studies 



The authors thank A. Verrellen for excellent technical assistance.

Research support: This work was supported by a doctoral grant from the Fonds Erasme (ALT) and by the Fonds Yvonne Boël (Brussels, Belgium). The CMMI is supported by the European Regional Development Fund and Wallonia. C.D. is a Senior Research Associate with the FNRS.

Conflicts of interest


Supplementary material

13277_2014_2800_MOESM1_ESM.doc (108 kb)
ESM 1 (DOC 107 kb)


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  6. 6.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 2008;22:436–48.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Wan F, Zhang S, Xie R, Gao B, Campos B, Herold-Mende C, et al. The utility and limitations of neurosphere assay, CD133 immunophenotyping and side population assay in glioma stem cell research. Brain Pathol. 2010;20:877–89.PubMedGoogle Scholar
  13. 13.
    Brescia P, Richichi C, Pelicci G. Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J Oncol. 2012. doi: 10.1155/2012/376894.
  14. 14.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.CrossRefPubMedGoogle Scholar
  16. 16.
    Schulte A, Günther HS, Phillips HS, Kemming D, Martens T, Kharbanda S, et al. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia. 2011;59:590–602.CrossRefPubMedGoogle Scholar
  17. 17.
    De Rosa A, Pellegatta S, Rossi M, Tunici P, Magnoni L, Speranza MC, et al. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS One. 2012;7:e52113.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rorive S, Maris C, Debeir O, Sandras F, Vidaud M, Bièche I, et al. Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse astrocytomas using microarray gene expression profiles. J Neuropathol Exp Neurol. 2006;65:794–807.CrossRefPubMedGoogle Scholar
  19. 19.
    Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, Chevassut T, et al. Comment on “ ‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science. 2003;302:393.CrossRefPubMedGoogle Scholar
  20. 20.
    Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298:601–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298:567–600.CrossRefGoogle Scholar
  22. 22.
    Pontén F, Jirström K, Uhlen M. The Human Protein Atlas–a tool for pathology. J Pathol. 2008;216:387–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Uhlén M et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28:1248–50.CrossRefPubMedGoogle Scholar
  25. 25.
    D’Haene N, Maris C, Sandras F, Dehou MF, Remmelink M, Decaestecker C, et al. The differential expression of Galectin-1 and Galectin-3 in normal lymphoid tissue and non-Hodgkin’s and Hodgkin’s lymphomas. Int J Immunopathol Pharmacol. 2005;18:431–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Bishop M, de la Monte SM. Dual lineage of astrocytomas. Am J Pathol. 1989;135:517–27.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Piepmeier JM, Fried I, Makuch R. Low-grade astrocytomas may arise from different astrocyte lineages. Neurosurgery. 1993;33:627–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Choi SA, Lee JY, Phi JH, Wang KC, Park CK, Park SH, et al. Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer. 2014;50:134–49.Google Scholar
  29. 29.
    Hayry V, Tynninen O, Haapasalo HK, Wolfer J, Paulus W, Hasselblatt M, et al. Stem cell protein BMI-1 is an independent marker for prognosis in oligodendroglial tumours. Neuropathol Appl Neurobiol. 2008;34:555–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Tirabosco R, De Maglio G, Skrap M, Falconieri G, Pizzolitto S. Expression of the Polycomb-Group protein BMI1 and correlation with p16 in astrocytomas: an immunohistochemical study on 80 cases. Pathol Res Pract. 2008;204:625–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Son MJ, Woolard K, Nam DH, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4:440–52.CrossRefPubMedGoogle Scholar
  32. 32.
    He J, Liu Y, Zhu T, Zhu J, Dimeco F, Vescovi AL, et al. CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics. 2012;11:M111.010744.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee CC, Lai JH, Hueng DY, Ma HI, Chung YC, Sun YY, et al. Disrupting the CXCL12/CXCR4 axis disturbs the characteristics of glioblastoma stem-like cells of rat RG2 glioblastoma. Cancer Cell Int. 2013;13:85.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vandeputte DA, Troost D, Leenstra S, Ijlst-Keizers H, Ramkema M, Bosch DA, et al. Expression and distribution of id helix-loop-helix proteins in human astrocytic tumors. Glia. 2002;38:329–38.CrossRefPubMedGoogle Scholar
  35. 35.
    Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6:421–32.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2008;68:6043–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Natsume A, Kinjo S, Yuki K, Kato T, Ohno M, Motomura K, et al. Glioma-initiating cells and molecular pathology: implications for therapy. Brain Tumor Pathol. 2011;28:1–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Dimov I, Tasić-Dimov D, Conić I. Stefanovic V (2011) Glioblastoma multiforme stem cells. Sci World J. 2011;11:930–58.CrossRefGoogle Scholar
  39. 39.
    Jin X, Jin X, Jung JE, Beck S, Kim H. Cell surface nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun. 2013;433:496–501.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:85.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Du Z, Jia D, Liu S, Wang F, Li G, Zhang Y, et al. Oct4 is expressed in human gliomas and promotes colony formation in glioma cells. Glia. 2009;57:724–33.CrossRefPubMedGoogle Scholar
  42. 42.
    Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron. 2007;53:503–17.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM. Held-Feindt. Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol. 2008;86:31–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Phi JH, Park SH, Kim SK, Paek SH, Kim JH, Lee YJ, et al. Sox2 expression in brain tumors: a reflection of the neuroglial differentiation pathway. Am J Surg Pathol. 2008;32:103–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Wan F, Herold-Mende C, Campos B, Centner FS, Dictus C, Becker N, et al. Association of stem cell-related markers and survival in astrocytic gliomas. Biomarkers. 2011;16:136–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Christensen K, Schroeder HD, Kristensen BW. CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neurooncol. 2008;90:157–70.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim KJ, Lee KH, Kim HS, Moon KS, Jung TY, Jung S, et al. The presence of stem cell marker-expressing cells is not prognostically significant in glioblastomas. Neuropathology. 2011;31:494–502.CrossRefPubMedGoogle Scholar
  48. 48.
    Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Thon N, Damianoff K, Hegermann J, Grau S, Krebs B, Schnell O, et al. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci. 2010;43:51–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88:808–15.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang J, Sakariassen PØ, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122:761–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I. DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol. 2004;63:1003–14.CrossRefPubMedGoogle Scholar
  54. 54.
    Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M. Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet. 2003;19:570–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Maenhaut C, Dumont JE, Roger PP, van Staveren WC. Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis. 2010;31:149–58.CrossRefPubMedGoogle Scholar
  56. 56.
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21:283–96.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6:425–36.CrossRefPubMedGoogle Scholar
  58. 58.
    Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, et al. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 2008;26:988–96.CrossRefPubMedGoogle Scholar
  59. 59.
    Yokoo H, Nobusawa S, Takebayashi H, Ikenaka K, Isoda K, Kamiya M, et al. Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas. Am J Pathol. 2004;164:1717–25.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Furusho M, Ono K, Takebayashi H, Masahira N, Kagawa T, Ikeda K. Ikenaka K (2006) Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol. 2006;293:348–57.CrossRefPubMedGoogle Scholar
  61. 61.
    Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci. 2005;8:865–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002;109:75–86.CrossRefPubMedGoogle Scholar
  63. 63.
    Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron. 2001;31:757–71.CrossRefPubMedGoogle Scholar
  64. 64.
    Novitch BG, Chen AI, Jessell TM. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron. 2001;31:773–89.CrossRefPubMedGoogle Scholar
  65. 65.
    Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol. 2002;12:1157–63.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109:61–73.CrossRefPubMedGoogle Scholar
  67. 67.
    Lee SK, Lee B, Ruiz EC, Pfaff SL. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 2005;19:282–94.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science. 2004;306:2111–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci. 2005;25:1354–65.CrossRefPubMedGoogle Scholar
  70. 70.
    Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.CrossRefPubMedGoogle Scholar
  71. 71.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26:7907–18.CrossRefPubMedGoogle Scholar
  72. 72.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51:187–99.CrossRefPubMedGoogle Scholar
  73. 73.
    Azzarelli B, Miravalle L, Vidal R. Immunolocalization of the oligodendrocyte transcription factor 1 (Olig1) in brain tumors. J Neuropathol Exp Neurol. 2004;63:170–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Bouvier C, Bartoli C, Aguirre-Cruz L, Virard I, Colin C, Fernandez C, et al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J Neurosurg. 2003;99:344–50.CrossRefPubMedGoogle Scholar
  75. 75.
    Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63:499–509.CrossRefPubMedGoogle Scholar
  76. 76.
    Lu QR, Park JK, Noll E, Chan JA, Alberta J, Yuk D, et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci U S A. 2001;98:10851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Marie Y, Sanson M, Mokhtari K, Leuraud P, Kujas M, Delattre JY, et al. OLIG2 as a specific marker of oligodendroglial tumour cells. Lancet. 2001;358:298–300.CrossRefPubMedGoogle Scholar
  78. 78.
    Ohnishi A, Sawa H, Tsuda M, Sawamura Y, Itoh T, Iwasaki Y, et al. Expression of the oligodendroglial lineage-associated markers Olig1 and Olig2 in different types of human gliomas. J Neuropathol Exp Neurol. 2003;62:1052–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.CrossRefPubMedGoogle Scholar
  81. 81.
    Popova SN, Bergqvist M, Dimberg A, Edqvist PH, Ekman S, Hesselager G, et al. Subtyping of gliomas of various WHO grades by the application of immunohistochemistry. Histopathology. 2014;64:365–79.CrossRefPubMedGoogle Scholar
  82. 82.
    Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110:8644–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.CrossRefPubMedGoogle Scholar
  84. 84.
    Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, et al. Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70:2030–40.CrossRefPubMedGoogle Scholar
  85. 85.
    Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther. 2013;6:1363–72.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Colin C, Virard I, Baeza N, Tchoghandjian A, Fernandez C, Bouvier C, et al. Relevance of combinatorial profiles of intermediate filaments and transcription factors for glioma histogenesis. Neuropathol Appl Neurobiol. 2007;33:431–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Mikami S, Hirose Y, Yoshida K, Kawase T, Ohnishi A, Nagashima K, et al. Predominant expression of OLIG2 over ID2 in oligodendroglial tumors. Virchows Arch. 2007;450:575–84.CrossRefPubMedGoogle Scholar
  88. 88.
    Motomura K, Natsume A, Watanabe R, Ito I, Kato Y, Momota H, et al. Immunohistochemical analysis-based proteomic subclassification of newly diagnosed glioblastomas. Cancer Sci. 2012;103:1871–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Lorente G, Nelson A, Mueller S, Kuo J, Urfer R, Nikolich K, et al. Functional comparison of long and short splice forms of RPTPbeta: implications for glioblastoma treatment. Neuro Oncol. 2005;7:154–63.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Liang Y, Bollen AW, Nicholas MK, Gupta N. Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol. 2005;5:6.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zeng W, Rushing EJ, Hartmann DP, Azumi N. Increased inhibitor of differentiation 4 (id4) expression in glioblastoma: a tissue microarray study. J Cancer. 2010;1:1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Warth A, Simon P, Capper D, Goeppert B, Tabatabai G, Herzog H, et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res. 2007;85:1336–46.CrossRefPubMedGoogle Scholar
  93. 93.
    Guo Y, Liu S, Wang P, Zhao S, Wang F, Bing L, et al. Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology. 2011;59:763–75.CrossRefPubMedGoogle Scholar
  94. 94.
    Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D. SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics. 2011;8:139–47.PubMedGoogle Scholar
  95. 95.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Anne-Laure Trépant
    • 1
  • Christelle Bouchart
    • 2
  • Sandrine Rorive
    • 1
    • 3
  • Sébastien Sauvage
    • 3
  • Christine Decaestecker
    • 3
    • 4
  • Pieter Demetter
    • 1
  • Isabelle Salmon
    • 1
    • 3
  1. 1.Department of Pathology, Erasme University HospitalUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of Radiotherapy-OncologyInstitut Jules BordetBrusselsBelgium
  3. 3.DIAPATH, Center of Microscopy and Molecular Imaging (CMMI)GosseliesBelgium
  4. 4.Laboratories of Image, Signal processing and Acoustics (LISA)Université Libre de BruxellesBrusselsBelgium

Personalised recommendations