Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 1923–1931 | Cite as

Runx2, a target gene for activating transcription factor-3 in human breast cancer cells

  • M. Gokulnath
  • N. C. Partridge
  • N. Selvamurugan
Research Article

Abstract

Activating transcription factor (ATF-3) is a stress response gene and is induced by transforming growth factor beta 1 (TGF-β1) in breast cancer cells. In this study, we dissected the functional role of ATF-3 gene in vitro by knocking down its expression stably in human bone metastatic breast cancer cells (MDA-MB231). Knockdown of ATF-3 expression in these cells decreased cell number, altered cell cycle phase transition, and decreased mRNA expression of cell cycle genes. Knockdown of ATF-3 expression in MDA-MB231 cells also decreased cell migration, and the expression levels of invasive and metastatic genes such as MMP-13 and Runx2 were found to be decreased in these cells. Most importantly, ATF-3 was associated with Runx2 promoter in MDA-MB231 cells and knockdown of ATF-3 expression decreased its association with Runx2 promoter. Hence, our results suggested that ATF-3 plays a role in proliferation and invasion of bone metastatic breast cancer cells in vitro and we identified for the first time that Runx2 is a target gene of ATF-3 in MDA-MB231 cell line.

Keywords

ATF-3 TGF-β1 MMP-13 Runx2 Bone metastasis 

Notes

Acknowledgments

We thank S. Vimalraj for his technical help. This work was supported by the Indian Council of Medical Research, India (Grant No. 5/31/128/2009-NCD-III to N.S) and the Rajiv Gandhi National Fellowship (No. RGNF-2013-14-SC-TAM-42130 to M.G).

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Canc J Clin. 2011;61(2):69–90.CrossRefGoogle Scholar
  2. 2.
    Rebecca S, Deepa Naishadham MA, Ahmedin Jemal DVM. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.CrossRefGoogle Scholar
  3. 3.
    Buijs JT, Van DPG. Osteotropic cancers: from primary tumor to bone. Canc Lett. 2009;273(2):177–93.CrossRefGoogle Scholar
  4. 4.
    Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, et al. Osteoblast related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 2003;63:2631–7.PubMedGoogle Scholar
  5. 5.
    Sterling JA, Edwards JR, Martin TJ, Mundy GR. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone. 2011;48:6–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Bu G, Lu W, Liu CC, Selander K, Yoneda T, Hall C, et al. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases. Int J Cancer. 2008;123:1034–42.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hai T, Hartman MG. The molecular biology and nomenclature of the ATF/CREB family of transcription factors: ATF proteins and homeostasis. Gene. 2001;273:1–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Ameri K, Hammond EM, Culmsee C, Raida M, Katschinski DM, Wenger RH, et al. Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway. Oncogene. 2007;26:284–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gold ES, Ramsey SA, Sartain MJ, et al. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med. 2012;209:807–17.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jang MK, Kim CH, Seong JK, Jung MH. ATF3 inhibits adipocyte differentiation of 3 T3-L1 cells. Biochem Biophys Res Commun. 2012;421:38–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Rose CL, Chakravarti N, Curry JL. The utility of ATF3 in distinguishing cutaneous squamous cell carcinoma among other cutaneous epithelial neoplasms. J Cutan Pathol. 2012;39:762–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Kwok S, Rittling SR, Partridge NC, Benson CS, Thiyagaraj M, Srinivasan N, et al. Transforming growth factor-b1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells. J Cell Biochem. 2009;108:408–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Yin X, Wolford CC, Chang YS, McConoughey S, Ramsey SA, Aderem A, et al. ATF3, an adaptive-response gene, enhances TGF {beta} signaling and cancer-initiating cell features in breast cancer cells. J Cell Sci. 2010;123:3558–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology. 2011;8:19.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu W, Iiizumi-Gairani M, Okuda H, Kobayashi A, Watabe M, Pai SK, et al. KAI1 gene is engaged in NDRG1 gene-mediated metastasis suppression through the ATF3-NF{kappa}B complex in human prostate cancer. J Biol Chem. 2011;286:18949–59.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lim JH, Lee HJ, Pak YK, Kim WH, Song J. Organelle stress-induced activating transcription factor-3 downregulates low-density lipoprotein receptor expression in Sk-Hep1 human liver cells. Biol Chem. 2011;392:377–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Yan L, Della Coletta L, Powell KL, Shen J, Thames H, Aldaz CM, et al. Activation of the canonical Wnt/b-catenin pathway in ATF3-induced mammary tumors. PLoS One. 2011;6:e16515.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pratap J, Lian JB, Stein GS. Metastatic bone disease: Role of transcription factors and future targets. Bone. 2011;48:30–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Selvamurugan N, Partridge NC. Constitutive expression and regulation of collagenase-3 in human breast cancer cells. Mol Cell Biol Res Commun. 2000;3:218–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Selvamurugan N, Kwok S, Partridge NC. Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-1-stimulated collagenase-3 expression in human breast cancer cells. J BiolChem. 2004;279:27764–73.Google Scholar
  21. 21.
    Pratap J, Lian JB, Javed A, Barnes GL, Van Wijnen AJ, Stein JL, et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006;25:589–600.CrossRefPubMedGoogle Scholar
  22. 22.
    Tandon M, Chen Z, Pratap J. Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res. 2014;16:R16.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Investig. 2013;123(7):2893–906.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Miranda PJ, Vimalraj S, Selvamurugan N. A feedback expression of microRNA-590 and activating transcription factor-3 in human breast cancer cells. Int J Biol Macromol. 2014;72:145–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Saravanan S, Vimalraj S, Vairamani M, Selvamurugan N. Role of mesoporous wollastonite (calcium silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: a cellular and molecular study. J Biomed Nanotechnol. 2015. doi: 10.1166/jbn.2015.2057.PubMedGoogle Scholar
  26. 26.
    Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol. 2014;66:194–202.CrossRefPubMedGoogle Scholar
  27. 27.
    Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. 2014;229:1236–44.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shimizu E, Selvamurugan N, Westendorf JJ, Olson EN, Partridge NC. HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression. J Biol Chem. 2010;285:9616–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoshizumi M, Hsieh CM, Zhou F, Tsai JC, Patterson C, Perrella MA, et al. The ATF site mediates downregulation of the cyclin A gene during contact inhibition in vascular endothelial cells. Mol Cell Biol. 1995;15:3266–72.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 1994;269:15819–26.PubMedGoogle Scholar
  31. 31.
    James CG, Woods A, Underhill TM, Beier F. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription. BMC Mol Biol. 2006;7:30–40.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zang S, Yu W, Chen H, Shi L, Li T, Chen A, et al. Expression of ATF3 and target genes cyclin D1 and maspin in colorectal cancer tissues. Chin J Cancer Prev Treat. 2012;19(24):1870–4.Google Scholar
  33. 33.
    Hao Z, Ao J, Zhang J, Su Y, Yang R. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells. Asian Pacific J Cancer Prev. 2013;14(12):7439–44.CrossRefGoogle Scholar
  34. 34.
    Selvamurugan N, Fung Z, Partridge NC. Transcriptional activation of collagenase-3 by transforming growth factor-beta1 is via MAPK and Smad pathways in human breast cancer cells. FEBS Lett. 2002;532:31–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N. Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers. 2013;35:369–87.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005;25:8581–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD, et al. Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 2008;68:7795–802.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Himge NO, Frenkel B. The RUNX family in breast cancer: Relationships with estrogen signaling. Oncogene. 2013;32:2121–30.CrossRefGoogle Scholar
  39. 39.
    Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • M. Gokulnath
    • 1
  • N. C. Partridge
    • 2
  • N. Selvamurugan
    • 1
  1. 1.Department of Biotechnology, School of BioengineeringSRM UniversityKattankulathurIndia
  2. 2.Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA

Personalised recommendations