Tumor Biology

, Volume 36, Issue 3, pp 1819–1834 | Cite as

Genetic polymorphisms in the one-carbon metabolism pathway genes and susceptibility to non-Hodgkin lymphoma

  • Sujatha Suthandiram
  • Gin-Gin Gan
  • Shamsul Mohd Zain
  • Ping-Chong Bee
  • Lay-Hoong Lian
  • Kian-Meng Chang
  • Tee-Chuan Ong
  • Zahurin Mohamed
Research Article
  • 164 Downloads

Abstract

Corroborating evidence related to the role of aberrations on one-carbon metabolism (OCM) genes has been inconsistent. We evaluated the association between polymorphisms in 12 single nucleotide polymorphisms (SNPs) in 8 OCM genes (CBS, FPGS, FTHFD, MTRR, SHMT1, SLC19A1, TCN1, and TYMS), and non-Hodgkin lymphoma (NHL) risk in a multi-ethnic population which includes Malay, Chinese and Indian ethnic subgroups. Cases (N = 372) and controls (N = 722) were genotyped using the Sequenom MassARRAY platform. Our results of the pooled subjects showed a significantly enhanced NHL risk for CBS Ex9 + 33C > T (T versus C: OR 1.55, 95 % CI 1.22–1.96, P = 0.0003), CBS Ex18-319G > A (A versus G: OR 1.15, 95 % CI 1.14–1.83; P = 0.002), SHMT1 Ex12 + 236 T > C (T versus C: OR 1.44, 95 % CI 1.15–1.81, P = 0.002), and TYMS Ex8 + 157C > T (T versus C: OR 1.29, 95 % CI 1.06–1.57, P = 0.01). Haplotype analysis for CBS SNPs showed a significantly decreased risk of NHL in subjects with haplotype CG (OR 0.69, 95 % CI 0.56–0.86, P = <0.001). The GG haplotype for the FTHFD SNPs showed a significant increased risk of NHL (OR 1.40, 95 % CI 1.12–1.76, P = 0.002). For the TYMS gene, haplotype CAT at TYMS (OR 0.67, 95 % CI 0.49–0.90, P = 0.007) was associated with decreased risk of NHL, while haplotype TAC (OR 1.29, 95 % CI 1.05–1.58, P = 0.01) was found to confer increased risk of NHL. Our study suggests that variation in several OCM genes (CBS, FTHFD, SHMT1, TCN1, and TYMS) may influence susceptibility to NHL.

Keywords

Genetic polymorphisms One-carbon metabolism pathway Non-Hodgkin lymphoma 

Notes

Acknowledgments

The authors would like to thank the Director of Health Malaysia for permission to publish this paper. The authors gratefully acknowledge the study subjects for their participation in this study and to the staff of UMMC and Ampang Hospital for their assistance in subject recruitment. This study was supported by the HIR MOHE grant E000025-20001, University Malaya Research Grant (UMRG; RG300/11HTM), University Malaya IPPP grant (PV072/2011B) and University Malaya IPPP grant (PS190/2010B).

Conflicts of interest

None

References

  1. 1.
    Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014.Google Scholar
  3. 3.
    Alexander DD, Mink PJ, Adami HO, Chang ET, Cole P, Mandel JS, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007;120 Suppl 12:1–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Skrabek P, Turner D, Seftel M. Epidemiology of non-Hodgkin lymphoma. Transfus Apher Sci. 2013;49(2):133–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Boccolini PMM, Boccolini CS, Chrisman JR, Markowitz SB, Koifman S, Koifman RJ, et al. Pesticide use and non-Hodgkin’s lymphoma mortality in Brazil. Int J Hyg Envir Heal. 2013;216(4):461–6.CrossRefGoogle Scholar
  6. 6.
    Grulich AE, Vajdic CM. The epidemiology of non-Hodgkin lymphoma. Pathology. 2005;37(6):409–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Bassig BA, Lan Q, Rothman N, Zhang Y, Zheng T. Current understanding of lifestyle and environmental factors and risk of non-Hodgkin lymphoma: an epidemiological update. J Cancer Epidemiol. 2012;2012:978930.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nauss KM, Newberne PM. Effects of dietary folate, vitamin B12 and methionine/choline deficiency on immune function. Adv Exp Med Biol. 1981;135:63–91.PubMedGoogle Scholar
  9. 9.
    Koutros S, Zhang Y, Zhu Y, Mayne ST, Zahm SH, Holford TR, et al. Nutrients contributing to one-carbon metabolism and risk of non-Hodgkin lymphoma subtypes. Am J Epidemiol. 2008;167(3):287–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–8.PubMedGoogle Scholar
  11. 11.
    Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, et al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica. 2004;89(2):154–64.PubMedGoogle Scholar
  12. 12.
    Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34(1):75–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Metayer C, Scelo G, Chokkalingam AP, Barcellos LF, Aldrich MC, Chang JS, et al. Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control. 2011;22(9):1243–58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Osborne CB, Lowe KE, Shane B. Regulation of folate and one-carbon metabolism in mammalian cells. I. Folate metabolism in Chinese hamster ovary cells expressing Escherichia coli or human folylpoly-gamma-glutamate synthetase activity. J Biol Chem. 1993;268(29):21657–64.PubMedGoogle Scholar
  16. 16.
    Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, et al. One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet. 2007;122(5):525–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999;67(4):317–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Girgis S, Suh JR, Jolivet J, Stover PJ. 5-Formyltetrahydrofolate regulates homocysteine remethylation in human neuroblastoma. J Biol Chem. 1997;272(8):4729–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, et al. A polymorphism (80G- > A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab. 2000;70(4):310–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras MG, Usala G, et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet. 2009;84(4):477–82.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li Q, Lan Q, Zhang Y, Bassig BA, Holford TR, Leaderer B, et al. Role of one-carbon metabolizing pathway genes and gene-nutrient interaction in the risk of non-Hodgkin lymphoma. Cancer Causes Control. 2013;24(10):1875–84.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, et al. Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case- control study. Blood. 2007;109(7):3050–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gemmati D, Ongaro A, Scapoli GL, Della Porta M, Tognazzo S, Serino ML, et al. Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin’s lymphoma in adults. Cancer Epidemiol Biomarkers Prev. 2004;13(5):787–94.PubMedGoogle Scholar
  24. 24.
    Christman JK, Sheikhnejad G, Dizik M, Abileah S, Wainfan E. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis. 1993;14(4):551–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Skibola CF, Forrest MS, Coppede F, Agana L, Hubbard A, Smith MT, et al. Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood. 2004;104(7):2155–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Suthandiram S, Gan GG, Zain SM, Haerian BS, Bee PC, Lian LH et al. Polymorphisms in methylenetetrahydrofolate reductase gene and risk of non-Hodgkin lymphoma in a multi-ethnic population. J Hum Genet. 2014;59(5):280–87.Google Scholar
  27. 27.
    Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology 2009:523–31.Google Scholar
  28. 28.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L, et al. SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res. 2006;34:D617–21. Database issue.CrossRefPubMedGoogle Scholar
  30. 30.
    Shen M, Rothman N, Berndt SI, He X, Yeager M, Welch R, et al. Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer. 2005;49(3):299–309.CrossRefPubMedGoogle Scholar
  31. 31.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.Google Scholar
  32. 32.
    Zhou JY, Shi R, Yu HL, Zeng Y, Zheng WL, Ma WL. Association between polymorphic sites in thymidylate synthase gene and risk of non-Hodgkin lymphoma: a systematic review and pooled analysis. Leuk Lymphoma. 2012;53(10):1953–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim HN, Lee IK, Kim YK, Tran HT, Yang DH, Lee JJ, et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma. Br J Haematol. 2008;140(3):287–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Weiner AS, Beresina OV, Voronina EN, Voropaeva EN, Boyarskih UA, Pospelova TI, et al. Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin’s lymphoma. Leuk Res. 2011;35(4):508–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Lim U, Weinstein S, Albanes D, Pietinen P, Teerenhovi L, Taylor PR, et al. Dietary factors of one-carbon metabolism in relation to non-Hodgkin lymphoma and multiple myeloma in a cohort of male smokers. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1109–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Hishida A, Matsuo K, Hamajima N, Ito H, Ogura M, Kagami Y, et al. Associations between polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and susceptibility to malignant lymphoma. Haematologica. 2003;88(2):159–66.PubMedGoogle Scholar
  37. 37.
    Lightfoot TJ, Skibola CF, Willett EV, Skibola DR, Allan JM, Coppede F, et al. Risk of non-Hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiol Biomarkers Prev. 2005;14(12):2999–3003.CrossRefPubMedGoogle Scholar
  38. 38.
    Andaya LY. The search for the ‘origin’ of Melayu. J South Asian Stud. 2001;32:315–30.Google Scholar
  39. 39.
    Tay CY, Mitchell H, Dong Q, Goh KL, Dawes IW, Lan R. Population structure of Helicobacter pylori among ethnic groups in Malaysia: recent acquisition of the bacterium by the Malay population. BMC Microbiol. 2009;9:126.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Di Piazza F. Malaysia in Pictures. Twenty-First Century Books.; 2006Google Scholar
  41. 41.
    Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB, et al. Genetic evidence on the origins of Indian caste populations. Genome Res. 2001;11(6):994–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marchani EE, Watkins WS, Bulayeva K, Harpending HC, Jorde LB. Culture creates genetic structure in the Caucasus: autosomal, mitochondrial, and Y-chromosomal variation in Daghestan. BMC Genet. 2008;9:47.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reuland SN, Vlasov AP, Krupenko SA. Modular organization of FDH: exploring the basis of hydrolase catalysis. Protein Sci. 2006;15(5):1076–84.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Krupenko SA, Oleinik NV. 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ. 2002;13(5):227–36.PubMedGoogle Scholar
  45. 45.
    Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J, et al. Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 2006;281(27):18335–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M, et al. Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes. J Hum Genet. 2006;51(1):47–58.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu CH, Ho KL, Hou KC, Lai KF. A new history of Malaysian Chinese, 3 Volume (in Chinese). Kuala Lumpur.: The Federation of Chinese Association Malaysia; 1998.Google Scholar
  48. 48.
    Chen J, Zheng H, Bei JX, Sun L, Jia WH, Li T, et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am J Hum Genet. 2009;85(6):775–85.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet. 2004;36(5):512–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, Jacques P, et al. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet. 2009;18(23):4677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao H, Pfeiffer R, Gail MH. Haplotype analysis in population genetics and association studies. Pharmacogenomics. 2003;4(2):171–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Morton LM, Wang SS, Cozen W, Linet MS, Chatterjee N, Davis S, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes. Blood. 2008;112(13):5150–60.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Sujatha Suthandiram
    • 1
  • Gin-Gin Gan
    • 2
  • Shamsul Mohd Zain
    • 1
  • Ping-Chong Bee
    • 2
  • Lay-Hoong Lian
    • 3
  • Kian-Meng Chang
    • 4
  • Tee-Chuan Ong
    • 4
  • Zahurin Mohamed
    • 1
  1. 1.The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of HematologyAmpang HospitalKuala LumpurMalaysia

Personalised recommendations