Tumor Biology

, Volume 36, Issue 3, pp 1763–1771 | Cite as

Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model

  • Mekky M. M. Abouzied
  • Heba M. Eltahir
  • Mohamed A. Abdel Aziz
  • Nagwa S. Ahmed
  • Ahmed A. Abd El-Ghany
  • Ebtihal A. Abd El-Aziz
  • Hekmat O. Abd El-Aziz
Research Article

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. In laboratory animal models, diethylnitrosamine (DENA) is a well-known agent that has a potent hepatocarcinogenic effect that is used to induce HCC. As curcumin has a potent anti-inflammatory effect with strong therapeutic potential against a variety of cancers, our present study aims to investigate its curative effects and the possible mechanisms of action against DENA-induced HCC in male rats. Investigation of biochemical and molecular parameters of HCC animal model liver showed an overexpression of TGF-β and Akt proteins accompanied with a significant reduction of the proapoptotic marker caspase-3. DENA-induced hepatic cellular injury resulted also in a significant increase in liver function marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lipid peroxides in this group. Curcumin treatment partially reversed DENA-induced damage as it reduced the overexpression of the angiogenic and anti-apoptotic factors TGF-β and Akt and improved caspase-3 expression. Also, it could partially normalize the serum values of liver marker enzymes and lipid peroxidation and improve liver architecture. Curcumin shows a unique chemotherapeutic effect in reversing DENA-induced HCC in rat model. This effect is possibly mediated through its proapoptotic, antioxidant, anti-angiogenic, as well as antimitotic effects. It interferes and modulates cell signaling pathways and hence turns death signals and apoptosis on within tumor cells.

Keywords

Apoptosis Angiogenesis TGF-β Akt Curcumin Diethylnitrosamine Hepatocellular carcinoma 

Abbreviations

DENA

Diethylnitrosamine

EGF

Endothelial growth factor

FGF

Fibroblast growth factor

HCC

Hepatocellular carcinoma

MDA

Malondialdehyde

MMP-9

Matrix metalloproteinase-9

RT/PCR

Reverse transcriptase Polymerase Chain Reaction

SDS–PAGE

Sodium dodecyl sulfate–poly acrylamide gel electrophoresis

TGF-β

Transforming growth factor beta

ROS

Reactive oxygen species

TBA

Thiobarbituric acid

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

This work was supported by Deanship of Scientific Research, Taibah University, El- Madinah El-Munawarah, P.O. Box 30001-Saudi Arabia, Faculty of Pharmacy Al-azhar University Assuit Branch-Egypt, and Faculty of Pharmacy Minia University, Mina, Egypt.

Conflicts of interest

None

References

  1. 1.
    Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23:363–98.PubMedGoogle Scholar
  2. 2.
    Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11:7490–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Bhosale PML, Ingle AD, Gadre RVB, Rao KV. Protective effect of Rhodotorula glutinis NCIM3353 on the development of hepatic preneoplastic lesions. Curr Sci. 2002;83:303–8.Google Scholar
  4. 4.
    Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005;7:32–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Bush JA, Cheung Jr KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res. 2001;271:305–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Caja L, Ortiz C, Bertran E, Murillo MM, Miro-Obradors MJ, Palacios E, et al. Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal. 2007;19:683–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Caraglia M, Giuberti G, Marra M, Addeo R, Montella L, Murolo M, et al. Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR. Cell Death Dis. 2011;2:e150.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar PA, Chatterjee M. Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: chemopreventive role of vanadium on this process. Biochim Biophys Acta. 2007;1772:48–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene. 2004;23:1599–607.CrossRefPubMedGoogle Scholar
  12. 12.
    Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif. 2003;36 Suppl 1:45–58.CrossRefPubMedGoogle Scholar
  13. 13.
    Dai XZ, Yin HT, Sun LF, Hu X, Zhou C, Zhou Y, et al. Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prev. 2013;14:3855–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ, McConkey D, et al. Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res. 1999;59:2551–6.PubMedGoogle Scholar
  15. 15.
    El-Shahat M, El-Abd S, Alkafafy M, El-Khatib G. Potential chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis in rats: myrrh (Commiphora molmol) vs. turmeric (Curcuma longa). Acta Histochem. 2012;114:421–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon. 2012;12:160–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fabregat I, Roncero C, Fernandez M. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 2007;27:155–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Folkman J. Angiogenesis-dependent diseases. Semin Oncol. 2001;28:536–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010;62:919–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Gururaj AE, Belakavadi M, Venkatesh DA, Marme D, Salimath BP. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun. 2002;297:934–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K, et al. Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias. Apoptosis. 2006;11:245–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13:395–406.CrossRefPubMedGoogle Scholar
  25. 25.
    Ito N, Kawata S, Tamura S, Takaishi K, Shirai Y, Kiso S, et al. Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma. Cancer Res. 1991;51:4080–3.PubMedGoogle Scholar
  26. 26.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A. 2000;97:1749–53.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jung JO, Gwak GY, Lim YS, Kim CY, Lee HS. Role of hepatic stellate cells in the angiogenesis of hepatoma. Korean J Gastroenterol. 2003;42:142–8.PubMedGoogle Scholar
  29. 29.
    Khar A, Ali AM, Pardhasaradhi BV, Begum Z, Anjum R. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett. 1999;445:165–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Kolenko V, Uzzo RG, Bukowski R, Bander NH, Novick AC, Hsi ED, et al. Dead or dying: necrosis versus apoptosis in caspase-deficient human renal cell carcinoma. Cancer Res. 1999;59:2838–42.PubMedGoogle Scholar
  31. 31.
    Kumada T, Nakano S, Takeda I, Sugiyama K, Osada T, Kiriyama S, et al. Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology. 1997;25:87–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.CrossRefPubMedGoogle Scholar
  33. 33.
    LoPiccolo J, Granville CA, Gills JJ, Dennis PA. Targeting Akt in cancer therapy. Anticancer Drugs. 2007;18:861–74.PubMedGoogle Scholar
  34. 34.
    Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, et al. Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. J Biol Regul Homeost Agents. 2013;27:105–19.PubMedGoogle Scholar
  35. 35.
    Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000;275:10405–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Morin D, Barthelemy S, Zini R, Labidalle S, Tillement JP. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett. 2001;495:131–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Muriel P. Cytokines in liver diseases. In: Sahu S, editor. Hepatotoxicity: from genomics to in vitro and in vivo models. West Sussex: Wiley; 2007.Google Scholar
  38. 38.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Okuda H. Hepatocellular carcinoma development in cirrhosis. Best Pract Res Clin Gastroenterol. 2007;21:161–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett. 2006;242:151–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  42. 42.
    Ramamoorthi G. & Sivalingam N. (2014) Molecular mechanism of TGF-beta signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Tumour BiolGoogle Scholar
  43. 43.
    Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? Aaps J. 2009;11:495–510.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, et al. Curcumin prevents and reverses cirrhosis induced by bile duct obstruction or CCl4 in rats: role of TGF-beta modulation and oxidative stress. Fundam Clin Pharmacol. 2008;22:417–27.CrossRefPubMedGoogle Scholar
  46. 46.
    Scott DW, Loo G. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis. 2004;25:2155–64.CrossRefPubMedGoogle Scholar
  47. 47.
    Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma. J Hepatol. 2004;41:864–80.CrossRefPubMedGoogle Scholar
  48. 48.
    Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal. 2007;2:10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sherman KE. Alanine aminotransferase in clinical practice. A review. Arch Intern Med. 1991;151:260–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Singh AK, Sidhu GS, Deepa T, Maheshwari RK. Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett. 1996;107:109–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Sreepriya M, Bali G. Effects of administration of embelin and curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Mol Cell Biochem. 2006;284:49–55.CrossRefPubMedGoogle Scholar
  52. 52.
    Suckow BK, Suckow MA. Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Int J Biomed Sci. 2006;2:402–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Tanaka S, Miyanishi K, Kobune M, Kawano Y, Hoki T, Kubo T, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J Gastroenterol. 2013;48:1249–58.CrossRefPubMedGoogle Scholar
  54. 54.
    Vaubourdolle M, Chazouilleres O, Briaud I, Legendre C, Serfaty L, Poupon R, Giboudeau J. Plasma alpha-glutathione S-transferase assessed as a marker of liver damage in patients with chronic hepatitis C. Clin Chem 1995;41:1716–9.Google Scholar
  55. 55.
    Vinals F, Pouyssegur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol. 2001;21:7218–30.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2011;29:4989–5005.CrossRefGoogle Scholar
  57. 57.
    Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep. 2004;11:25–32.PubMedGoogle Scholar
  58. 58.
    Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 2006;34:109–15.PubMedGoogle Scholar
  59. 59.
    Yu S, Shen G, Khor TO, Kim JH, Kong AN. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008;7:2609–20.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang CY, Zhang L, Yu HX, Bao JD, Lu RR. Curcumin inhibits the metastasis of K1 papillary thyroid cancer cells via modulating E-cadherin and matrix metalloproteinase-9 expression. Biotechnol Lett. 2013;35:995–1000.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Mekky M. M. Abouzied
    • 1
    • 2
  • Heba M. Eltahir
    • 1
  • Mohamed A. Abdel Aziz
    • 3
  • Nagwa S. Ahmed
    • 4
  • Ahmed A. Abd El-Ghany
    • 3
  • Ebtihal A. Abd El-Aziz
    • 5
  • Hekmat O. Abd El-Aziz
    • 6
  1. 1.Department of Pharmacology and Toxicology, College of PharmacyTaibah UniversityEl- Madinah El-MunawarahSaudi Arabia
  2. 2.Department of Biochemistry, Faculty of PharmacyMinia UniversityMiniaEgypt
  3. 3.Department of Biochemistry, Faculty of PharmacyAl-Azhar UniversityAssiut branchEgypt
  4. 4.Department of Biochemistry, Faculty of MedicineSohag UniversitySohagEgypt
  5. 5.Department of Physiology, Faculty of MedicineAssiut UniversityAssuitEgypt
  6. 6.Department of Histology, Faculty of MedicineSohag UniversitySohagEgypt

Personalised recommendations