Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis


The current methods available for screening and detecting cervical squamous cell carcinoma (CSCC) have insufficient sensitivity and specificity. As a result, many patients suffered from erroneous and missed diagnosis. Because CSCC is usually asymptomatic at potentially curative stages, identification of biomarkers is an urgent need for the early detection of CSCC. Comparative proteomics based on two-dimensional differential in-gel electrophoresis (2D-DIGE) was employed to quantitatively analyze plasma proteins of healthy Uyghur women and with early stage cervical carcinoma. The 2D-DIGE image were analyzed statistically using DeCyder™ 2D software. The statistical analysis of proteomic data revealed that 43 protein spots showed significantly different expression (ratio > 1.5, P < 0.01). A further identification of these protein spots by MALDI-TOF-MS found out 16 different proteins. Bioinformatic analysis within the framework of Ingenuity Pathway Analysis (IPA@) showed that 10 plasma proteins as candidate biomarker were screened, mainly including lipid metabolism-related proteins (APOA4, APOA1, APOE), complement (EPPK1, CFHR1), metabolic enzymes (CP, F2, MASP2), glycoprotein (CLU), and immune function-related proteins (IGK@). Networks involved in lipid metabolism, molecular transport, and small molecule biochemistry were dysfunctional in CSCC. Acute phase response signaling and JAK/Stat signaling and IL-4 signaling, etc., were identified as the canonical pathways that are overrepresented in CSCC. Furthermore, the expression of three proteins (APOA1, APOE, CLU) were validated using ELISA in plasma of patients with different stage cervical lesion. With the combined proteomic and bioinformatic approach, this study was successful in identifying biomarker signatures for cervical cancer and might provide new insights into the mechanism of CSCC progression, potentially leading to the design of novel diagnostic and therapeutic strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Liu KJ, Liu JW, LI XR, et al. Epidemiology study of risk factors on Uigur and Han cervical cancer in Xinjiang. J Xinjiang Med Univ. 2008;31:1335–8.

    Google Scholar 

  2. 2.

    Suzuke L, Peng YH, Zhou K, et al. The analysis of pathogenetic tendency of cervical cancer in various ethnic women in Xinjiang. J Xinjiang Med Univ. 2006;29:569–71.

    Google Scholar 

  3. 3.

    Zhang GQ, LIU KJ, Lai XJ, et al. Distribution of malignant tumor patients in hospital from 1989 to 2002 in the Affiliated Tumor Hospital of Xinjiang Medical University. J Xinjiang Med Univ. 2003;26:393–5.

    Google Scholar 

  4. 4.

    Zhang SQ, Yakup K, Abliz G, et al. The study of the relationships between HPV multiple infection and cervical cancer of Uygur Women in Xinjiang. J Xinjiang Med Univ. 2009;32:525–8.

    Google Scholar 

  5. 5.

    Lynge E, Rygaard C, Baillet MV, et al. Cervical cancer screening at crossroads. APMIS. 2014;122(8):667–73.

    Article  PubMed  Google Scholar 

  6. 6.

    Kim HS. Correction: primary, secondary, and tertiary prevention of cervical cancer. J Gynecol Oncol. 2014;25(3):261.

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systems-wide perspective for protein markers with potential clinical utility. Expert Rev Proteomics. 2013;10(4):337–54.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Nair M, Sandhu SS, Sharma AK. Prognostic and predictive biomarkers in cancer. Curr Cancer Drug Targets. 2014.

  9. 9.

    Baker ES, Liu T, Petyuk VA, et al. Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med. 2012;4(8):63.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lihong H, Linlin G, Yiping G, et al. Proteomics approaches for identification of tumor relevant protein targets in pulmonary squamous cell carcinoma by 2D-DIGE-MS. PLoS One. 2014;9(4):e95121.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Pressey JG, Pressey CS, Robinson G, et al. 2D-difference gel electrophoretic proteomic analysis of a cell culture model of alveolar rhabdomyosarcoma. J Proteome Res. 2011;10(2):624–36.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Righetti PG, Boschetti E, Lomas L, Citterio A. Protein Equalizer Technology: the quest for a “democratic proteome”. Proteomics. 2006;6:3980–92.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sihlbom C, Kanmert I, Bahr HV, Davidsson P. Evaluation of the combination of bead technology with SELDI-TOF-MS and 2-D DIGE for detection of plasma proteins. J Proteome Res. 2008;7(9):4191–8.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Yadav AK, Bhardwaj G, Basak T. A systematic analysis of eluted fraction of plasma post immunoaffinity depletion: implications in biomarker discovery. PLoS ONE. 2011;6(9):e24442.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hanash S. A call for a fresh new look at the plasma proteome. Proteomics Clin Appl. 2012;6(9–10):443–6.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Matsubara J, Honda K, Ono M, et al. Identification of adipophilin as a potential plasma biomarker for colorectal cancer using label-free quantitative mass spectrometry and protein microarray. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2195–203.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhou C, Simpson KL, Lancashire LJ, et al. Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery. J Proteome Res. 2012;11(4):2103–13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lin YW, Lai HC, Lin CY, et al. Plasma proteomic profiling for detecting and differentiating in situ and invasive carcinomas of the uterine cervix. Int J Gynecol Cancer. 2006;16(3):1216–24.

    Article  PubMed  Google Scholar 

  19. 19.

    Xia T, Zheng ZG, Gao Y, et al. [Application of SELDI-TOF serum proteome profiling in cervical squamous cell carcinoma]. Ai Zheng. 2008;27(3):279–82.

    CAS  PubMed  Google Scholar 

  20. 20.

    Looi ML, Karsani SA, Rahman MA, et al. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Biosci. 2009;34(6):917–25.

    CAS  Article  Google Scholar 

  21. 21.

    Dae HJ, Hyoung KK, Abd-EI BP, et al. Plasma proteomic analysis of patients with squamous cell carcinoma of the uterine cervix. Gynecol Oncol. 2008;19(3):173–80.

    Article  Google Scholar 

  22. 22.

    Paradkar PH, Joshi JV, Mertia PN, et al. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev. 2014;15(9):3851–64.

    Article  PubMed  Google Scholar 

  23. 23.

    Medina-Martinez I, Barrón V, Roman-Bassaure E, et al. Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study. PLoS One. 2014;9(5):e97842.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zhao Y, Wang H, Gustafsson M, et al. Combined multivariate and pathway analyses show that allergen-induced gene expression changes in CD4+ T cells are reversed by glucocorticoids. PLoS One. 2012;7(6):e39016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lamba JK, Crews KR, Pounds SB, et al. Identification of predictive markers of cytarabine response in AML by integrative analysis of gene-expression profiles with multiple phenotypes. Pharmacogenomics. 2011;12(3):327–39.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang HY, Tian YF, Chien CC, et al. Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transplant. 2010;25(6):1955–63.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bencharif K, Hoareau L, Murumalla RK, et al. Effect of apoA-I on cholesterol release and apoE secretion in human mature adipocytes. Lipids Health Dis. 2010;20(9):75.

    Article  Google Scholar 

  28. 28.

    Cine N, Baykal AT, Sunnetci D, et al. Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer. Oncol Rep. 2014;32(3):1078–86.

    CAS  PubMed  Google Scholar 

  29. 29.

    His M, Zelek L, Deschasaux M, et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol. 2014;29(2):119–32.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Zamanian-Daryoush M, Lindner D, Tallant TC, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J Biol Chem. 2013;288(29):21237–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Van Hemelrijck M, Walldius G, Jungner I, et al. Low levels of apolipoprotein A-I and HDL are associated with risk of prostate cancer in the Swedish AMORIS study. Cancer Causes Control. 2011;22(7):1011–9.

    Article  PubMed  Google Scholar 

  32. 32.

    Muntoni S, Atzori L, Mereu R, et al. Serum lipoproteins and cancer. Nutr Metab Cardiovasc Dis. 2009;19(3):218–25.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Moore RJ, Chamberlain RM, Khuri FR. Apolipoprotein E and the risk of breast cancer in African-American and non-Hispanic white women. Oncology. 2004;66(2):79–93.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Anand R, Prakash SS, Veeramanikandan R, et al. Association between apolipoprotein E genotype and cancer susceptibility: a meta-analysis. J Cancer Res Clin Oncol. 2014;140(7):1075–85.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Su WP, Chen YT, Lai WW, et al. Apolipoprotein E expression promotes lung adenocarcinoma proliferation and migration and as a potential survival marker in lung cancer. Lung Cancer. 2011;71(1):28–33.

    Article  PubMed  Google Scholar 

  36. 36.

    Koltai T. Clusterin: a key player in cancer chemoresistance and its inhibition. Onco Targets Ther. 2014;20(7):447–56.

    Article  Google Scholar 

  37. 37.

    Lee S, Hong SW, Min BH, et al. Essential role of clusterin in pancreas regeneration. Dev Dyn. 2011;240(3):605–15.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Zoubeidi A, Ettinger S, Beraldi E, et al. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res. 2010;8(1):119–30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest



This study was supported by Natural Science Foundation of China (81060171, 81260380 and 81360321). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information



Corresponding author

Correspondence to Abulizi Abudula.

Additional information

Xia Guo and Yi Hao contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Hao, Y., Kamilijiang, M. et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis. Tumor Biol. 36, 1711–1720 (2015). https://doi.org/10.1007/s13277-014-2772-5

Download citation


  • Plasma proteome
  • CSCC
  • Plasma biomarkers
  • 2D-DIGE
  • Ingenuity Pathway Analysis